
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Graviton modes in fractional quantum hall liquids

Wang, Yuzhu

2023

Wang, Y. (2023). Graviton modes in fractional quantum hall liquids. Doctoral thesis,
Nanyang Technological University, Singapore. https://hdl.handle.net/10356/165156

https://hdl.handle.net/10356/165156

https://doi.org/10.32657/10356/165156

This work is licensed under a Creative Commons Attribution‑NonCommercial 4.0
International License (CC BY‑NC 4.0).

Downloaded on 04 Jun 2024 21:47:00 SGT



GRAVITON MODES IN FRACTIONAL

QUANTUM HALL LIQUIDS

WANG YUZHU

School of Physical and Mathematical Sciences

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

2023

http://www.ntu.edu.sg
https://www.researchgate.net/profile/Yuzhu-Wang-8
https://www.ntu.edu.sg/spms




Statement of Originality

I hereby certify that the work embodied in this thesis is the result

of original research done by me except where otherwise stated in

this thesis. The thesis work has not been submitted for a degree

or professional qualification to any other university or institution. I

declare that this thesis is written by myself and is free of plagiarism

and of sufficient grammatical clarity to be examined. I confirm that

the investigations were conducted in accord with the ethics policies

and integrity standards of Nanyang Technological University and that

the research data are presented honestly and without prejudice.

Oct 6th, 2022
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date WANG YUZHU

https://www.researchgate.net/profile/Yuzhu-Wang-8




Supervisor Declaration Statement

I have reviewed the content and presentation style of this thesis and

declare it of sufficient grammatical clarity to be examined. To the

best of my knowledge, the thesis is free of plagiarism and the research

and writing are those of the candidate’s except as acknowledged in the

Author Attribution Statement. I confirm that the investigations were

conducted in accord with the ethics policies and integrity standards

of Nanyang Technological University and that the research data are

presented honestly and without prejudice.

Oct 6th, 2022
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date Prof. YANG BO





Authorship Attribution Statement

Please select one of the following; *delete as appropriate:

(A) This thesis does not contain any materials from papers published

in peer-reviewed journals or from papers accepted at conferences in

which I am listed as an author.

(B) This thesis contains material from 3 papers published in the fol-

lowing peer-reviewed journals / from papers accepted at conferences

in which I am listed as an author.

Please amend the typical statements below to suit your circumstances if (B) is
selected.

Part of Sec.3.4.3 and Chap.4 are published asWang, Y., Yang, B.(2022). Analytic
exposition of the graviton modes in fractional quantum Hall effects and its physical
implications. Physical Review B, 105, 035144

The contributions of the co-authors are as follows:

• Prof Yang provided the initial project direction and edited the manuscript
drafts.

• I prepared the manuscript drafts, including the analytical derivations and the
numerical simulations.

Part of Sec.3.5 is published as Ha, Trung Q., Wang, Y., Yang, B.(2022). Spin-
statistics relation and robustness of braiding phase for anyons in fractional quantum
Hall effect. arXiv:2208.13786. (under review)

The contributions of the co-authors are as follows:

• Prof Yang provided the initial project direction and edited the manuscript
drafts.

• Ha Quang Trung did most of the numerical work and prepared the manuscript
drafts.

• I did the analytical derivations together with Trung and provided the theo-
retical part related to the composite fermionization.

Part of Chap.5 is posted online as Wang, Y., Yang, B.(2022). Geometric Fluc-
tuation of Conformal Hilbert Spaces and Multiple Graviton Modes in Fractional
Quantum Hall Effect. arXiv:2201.00020. (under review)



viii

The contributions of the co-authors are as follows:

• Prof Yang suggested and edited the manuscript drafts.

• I prepared the manuscript drafts, including the analytical derivations and the
numerical simulations.

Oct 6th, 2022
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date WANG YUZHU

https://www.researchgate.net/profile/Yuzhu-Wang-8


Acknowledgements

It is tough to believe that my career as a Ph.D. student is coming to an end because

there have been so many precious memories along the journey. Reading the notes

that I have written these years, it feels quite unrealistic - these things that look

so natural to me nowadays took me tons of effort to understand back then. But

maybe this is exactly the essence of getting a Ph.D., i.e. striving as much as

possible to integrate a small portion of human knowledge into your own life and

carry it forward.

The most valuable treasure I have got along the way must be all the great teachers

and the lovely friends, who made my day even at the worst time when the formulas

seemed desperate to be derived. I wish to express my greatest gratitude to my

advisor, Prof. Yang Bo, who patiently taught me so many things about FQHE and

relevant academic skills. Besides physics, I also benefited a lot from the freedom

he gave, which allowed me to learn many things without worrying too much about

the outcome. I also learned from him that it is a theoretical physicist’s basic ability

to write down explicit expressions to precisely explain the thinking to others. Prof

Yang once told me that I should work hard from Monday to Saturday but go

outside and wander around the island on Sunday, which I wish I can achieve in

the next few years, considering at present Singapore is still approximately equal to

Jurong West to me.

And I also want to thank Prof. Lee Ching Hua from NUS, who has been one of my

guides in physics since I was an undergraduate. I still remember the high buildings

Ching Hua took me to visit when I first came to Singapore in 2018, and the delicious

Janggut Laksa and Otah he invited me to taste (I finally got to know the shop’s

exact location several months ago, which is in Alexandra.). Ching Hua is always

passionate about physics and I learned incredible things about nodal systems, non-

Hermitian physics, and topolectric circuits from him. I am also grateful for the

ix



x

suggestion of staying at theoretical physics from my undergraduate supervisor,

Prof. Zhang Xiao, who led me into the world of research.

I am also indebted to many other professors for their help: Prof. Pinaki Sengupta

for teaching me many things about condensed matter physics (and his terrific sense

of humor); Prof. Justin Song for being my TAC member and offering me many

comments on my work; Prof. Chong Yidong for teaching me quantum informa-

tion and QED; Prof. Cheong Siew Ann for instructing me writing Monte Carlo

algorithms; Prof. Yong Ee Hou for teaching me clustering expansion, RG group

and other useful techniques in statistical mechanics; Prof. Zhang Baile for the

delightful discussions on his research and experiences and Dr. Sujata S. Kathpalia

for helping me with my academic writing.

It will be very frustrating due to the isolation from others during the pandemic if

I did not meet so many good friends. Trung is definitely the one who I can always

turn to, for help or maybe just a small chitchat. His wonderful FQH library saved

so much time for me doing numerics. For a long while there were only two of us in

PAP 04-24 so we can freely discuss lots of things. Trung also introduced me to Arifa,

Jian Wei, Minjeong, and Farisan, and we had a short-term learning group where I

learned many things about superfluid. I also want to thank other members in Prof.

Yang’s research group: Dr. Yang Chao for teaching me master equation hand by

hand in prof’s old office; Dr. Kristian Hauser Villegas for his nice tutorial about

AdS/CMT duality and teaching me many things about superconductivity and the

Higgs mechanism; Dr. Sun Hao for teaching me things about the Luttinger liquid

and congratulations on his happy wedding; Dr. Chen Tianqi for teaching me things

about quantum computation and leading me to explore the possible combination

of FQHE and quantum computation; Dr. Yoshiki Fukusumi for revising my thesis

carefully and offering me many constructive suggestions on the parts relevant to

CFT

I also want to sincerely thank my family and especially my parents, who have been

providing all the support I need since the first day of my life, to whom I owe too

much because I did not have the chance to get back home since the pandemic

spread. During this time my grandmother passed away and I did not have the

chance to say goodbye to her, which is a significant regret for me and I really hope

that I can live up to her expectations one day. I would like to thank my dear

girlfriend Jiayi for coming to Singapore and creating so many good memories with



xi

me. Besides, I would like to specifically thank my landlords, a kindly old couple

for their always timely help.

Finally, I want to thank NTU and MOE for the scholarship over the past three

years. It is a very enjoyable experience to study at NTU and I will choose it again

if I have got the chance. The self-discipline and the scholarship spirit I learned

from here will be cherished all the time.





“Aut inveniam viam aut faciam.”

—Hannibal Barca

To my dear family





Abstract

The fractional quantum Hall fluid is a two-dimensional quantum fluid of electrons

subject to a strong magnetic field at low temperatures. Neutral excitations in a

fractional quantum Hall droplet define the incompressibility gap of the topological

phase. Among these states, there are some specific modes in the long-wavelength

limit that can be understood as “spin-2 gravitons”. In this thesis, we will intro-

duce a set of analytical results for the energy gap of the graviton modes for model

Hamiltonians in the thermodynamic limit, which is governed by a well-defined and

universal characteristic tensor. These results can help to construct model Hamilto-

nians for the graviton modes of different FQH phases and elucidate a hierarchical

structure of conformal Hilbert spaces (null spaces of model Hamiltonians) contain-

ing the graviton modes and their corresponding ground states. An isomorphism

can be defined for these conformal Hilbert spaces, and the mapping between them

can be regarded as a more rigorous and general reinterpretation of the composite

fermionization of FQH states, with naturally emergent composite fermions (each

consisting of one electron and an even number of fluxes). The results from exact

diagonalization will be shown, which confirm that for gapped phases, low-lying

neutral excitations can undergo a phase transition even when the ground state re-

mains in the same phase. Furthermore, the gaplessness of the Gaffnian state could

be testified based on this formalism with further numerical experiments.

Recently there has been numerical evidence implying the signature of multiple

graviton modes. We will introduce the microscopic theory for the emergence of

multiple gravitons in fractional quantum Hall droplets based on composite fermion-

ization and the well-defined particle-hole conjugate within a specific conformal

Hilbert space. This reveals the dynamical nature of this phenomenon and provides

theoretical insights into the chirality and the “merging and splitting” behaviors of

the graviton modes. The experimental relevance of multiple graviton modes will be

discussed. The microscopic theory of gravitons can also provide valuable insights

into the field-theoretical approaches.

xv
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trons and 26 orbitals. (a) As the color bar shows, the red dots
depict the spectrum of the density modes, and the blue dots de-
note the hollow-core modes. The color of each dot is determined
by calculating their collective overlap with all the density modes
in the Laughlin-1/3 null space HL-1/3, or all the hollow-core modes
in the complementary space H̄L-1/3. As λ increases, though the
ground state (denoted by dark red) stays invariant, the low-lying
states show a clear cross-over behavior and transform from density
modes to hollow-core modes. (b) illustrates the structure of the
Hilbert space and the relationship between the states and the model
Hamiltonians. The Laughlin-1/5 null space HL-1/5 (dark red circle)

punished by neither V̂ 2bdy
1 nor V̂ 2bdy

3 is the sub-space of HL-1/3 (only

punished by V̂ 2bdy
3 ). Meanwhile, there exist the hollow-core modes

(blue circle) only punished by V̂ 2bdy
1 in H̄L-1/3. All of the other states

are punished by both V̂ 2bdy
1 and V̂ 2bdy

3 , living in the remaining part
of H̄L-1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.7 Nature of the low-lying states with different model Hamil-
tonian in the CF picture. (a) The Laughlin-1/5 state of the
electrons can be reinterpreted as the Laughlin-1/3 state of CFs con-
sisting of one electron and two fluxes, which also follows from the
Jain construction. (b) The graviton modes can be understood as
the excitations of CFs in the lowest CF level. (c) The hollow-core
modes are created by exciting CFs to the second CF level, which
still live in the Gaffnian null space. . . . . . . . . . . . . . . . . . . 115



xxii LIST OF FIGURES

4.8 Spectrum of the toy Hamiltonian ĤG with respect to 10
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êα unit vector along α-direction, α ∈ {x, y, z}
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Chapter 1

Introduction: the Chronicles of

Fractional Quantum Hall Effect

The interplay between charged particles and magnetic field has been discussed for

more than one hundred years among physicists, which has also brought tons of ap-

plications to human society [1, 2]. However, with the rapid development of quantum

mechanical formalism, the classical picture based on the Lorentz force was proved

to be insufficient to describe the intrinsic physics anymore, which was confirmed by

the discovery of the integer quantum Hall effect (IQHE) of two-dimensional elec-

tron gas (2DES) in a metal-oxide-semiconductor field-effect transistor (MOSFET)

as discussed in details later [3]. The experimental measurements showed a very

accurate quantized feature at integral values of the so-called Hall resistance Rxy.

The Landau quantization of electronic kinetic energy perfectly explained this [4, 5].

Meanwhile, the role of dimension was found to be important in this phenomenon.

That is, though we can have some other interesting magnetic-field-related effects

such as the De Haas–van Alphen effect [6, 7] and the Shubnikov–de Haas effect

[8, 9] in three-dimensional space (It is worth noticing that most of the effects re-

lated to the magnetic field show some periodic or oscillating behavior, which does

remind us of the classical circular-motion picture from time to time), the quantum

Hall effects are essentially restricted to 2D systems because additional dimensions

could generate multiple sets of Landau levels (LLs) that mess up with the spec-

trum and destroy the plateaus [10]. However, the subsequent observation of the

fractional quantum Hall effect (FQHE) under more extreme conditions raised new

challenges to the coherent explanation of the plateaus at specific rational numbers,

1



2 1.1. Early stage: 1982 - 1984

which clearly cannot be explained by the Landau quantization[11]. In fact, it is

one of the (strong-coupling) topological orders rarely found so far, and thus the

core discussion is about properly resolving the interactions between particles.

In this introduction, we would like to provide a thorough historical review of the

development of the FQHE. Although great progress has been made, a complete

theory of FQHE remains a pendent problem in contemporary physics. Therefore,

we will try separating the timeline by using several keywords, which are purely

based on the author’s own opinion and the topic of this thesis (so we will partic-

ularly mention the topic about geometric degrees of freedom in FQH phases) and

can definitely be classified in other ways. Meanwhile, mathematical content will

be suppressed to a minimum in this part - only those that are really important (or

elegant) will be shown to tell a consistent story about concepts rather than tech-

niques. In fact, every historical period is a mixture of studies on various topics,

so here we only mean to focus on those first proposed or discovered in each period

and make them more organized by following the chronological order. The key is,

however, to learn from the trend and determine where the next step should be

taken. More importantly, instead of using a separate section to present the main

contribution in this thesis, we will add introductions or comments to the content in

this thesis at the proper place of the whole timeline of FQHE studies, which could

provide a big picture for the reader to see the relevance of this thesis to the related

topics.

1.1 Early stage: 1982 - 1984

Unlike many other areas in physics where theoretical physicists are often able to

make predictions that are later verified in experiments, the experimentalists have

played the role of pioneers in the story of quantum Hall effects (they did not ex-

pect to see these phenomena themselves either, though). The era of quantum Hall

started from the discovery of quantized Hall resistance at integers by Klitzing,

Dorda, and Pepper in 1980 [3], followed by the remarkable experiments in GaAs

systems by Tsui, Störmer and Gossard revealing richer structures with higher mag-

netic field and lower temperature two years later [11]. The fractionally-quantized

Hall resistance, accompanied by the vanishing longitudinal resistance, drew atten-

tion from everyone working on condensed matter at that time. So the theories at
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Figure 1.1: Skipping orbits. The electrons circulate (gray orbit) in the
magnetic field (the direction is denoted by the white circle) as in the classical
limit, and bounce back when hitting on the boundary (red and blue orbits),
which gives the chiral edge currents.

this stage mainly focused on exploring the significance of specific fractional filling

factors, debating the nature of the ground states, and establishing the relationship

between different phases.

In 1982 Halperin proposed a nice and intuitive semi-classical explanation to the

chiral and dissipationless edge current by using the picture of skipping orbits that

have been commonly seen in textbooks nowadays, where the electrons circulate in

the magnetic field as in the classical limit and bounce back when hitting on the

boundary as shown in Fig.1.1 [12]. Meanwhile, Thouless, Kohmoto, Nightingale,

den Nijs (and also Streda independently) derived the astonishing relationship be-

tween the Hall conductance and a topological invariant, the first Chern number,

which was later found to be relevant to the geometric Berry phase and Berry cur-

vature (they still called it “the Kubo formula” back then) [13–17]. Their discovery

literally added topology to physicists’ toolbox and assigned explicit physical signif-

icance to the concepts in topology. Then in 1983, the acute physical instinct of

Laughlin brought the community the first model wave function with a comprehen-

sible “plasma analogy” based on his earlier closed-form solution to the Schrödinger

equation of two and three electrons interacting with each other in a magnetic field

(An interesting anecdote is that the term Laughlin used in the title, anomalous

quantum Hall effect, to be distinguished from the integer quantum Hall, was used

for totally different things afterward.), which describes the FQH state at the filling

factor 1/m (and also the corresponding particle-hole conjugate partner at 1−1/m)
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where m is an odd integer, which is now known as the Laughlin states, and ex-

plained the quantized Hall resistance [18, 19]:

ψL (z) =
∏
i<j

(zi − zj)
m e−

∑n
i=1|zi|

2/4ℓ2B . (1.1)

Here zi is the holomorphic coordinate of the i-th electron and ℓB =
√

ℏ/eB is the

magnetic length. It is also from this time that writing down first-quantized model

wave functions with complex coordinates to describe FQH states became some

convention, unlike in many other areas, such as superconductivity, where second-

quantized wave functions are preferred. Haldane attempted to generalize the FQH

states to different geometries at the same time [20, 21], who considered a hierarchy

of states on the sphere (and torus afterward with Rezayi [22]), and Tao and Thou-

less’ construction by mapping the FQH ground states to a one-dimensional (1D)

system, which is now called the thin-torus or Tao-Thouless limit [23–25]. More im-

portantly, Haldane proposed the model Hamiltonians of the Laughlin model states,

which are now called Haldane pseudopotentials as explained in the next chapter,

and this was double-checked by Girvin and Jach’s numerical study to the ground

states of harmonic interactions (∼ (r̂i− r̂j)2 where i, j are particle indices) [26, 27].
It is worth noticing that a favored choice of gauge typically accompanies a given

geometry, but it is possible to study the FQH states in a gauge-free manner as in-

troduced in Chap.2. This will be more helpful for discussing the geometric aspects

without any presumed geometry or symmetry, and by using the pseudopotentials

one can either expand the Coulomb interaction or simply construct a model Hamil-

tonian to give the corresponding ground state.

The model wave functions proposed by Laughlin were also generalized to charged

excitations, including quasielectrons and quasiholes, which are generally termed as

quasiparticles [19]. These excitations were predicted to exhibit anyonic behaviors,

i.e., fractional charge based on Laughlin’s plasma analogy [19] and fractional statis-

tics relevant to the filling factor of the state, by Arovas, Schrieffer, and Wilczek

in 1984 [28, 29], accompanied by Halperin’s study to the iterative construction of

the FQH states by adding quasiparticles to a parent state (equivalent to the con-

densation of quasiparticles), which also confirmed the fractional statistics by using

model wave functions [30]. The idea of looking for a possible hierarchy of FQH

states was embedded into this field by Haldane and Halperin since then and proved

very promising by the following theories.
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In the same year, Tao and Wu started the discussion on the degeneracy of the FQH

ground states based on the idea of gauge invariance [31], which was earlier adopted

by Laughlin to explain the integer filling factors [15]. Numerical methods such

as exact diagonalizations came into play as well, which has been able to provide

the ground state energy and pair correlation functions of the Laughlin states back

at that time [32]. Furthermore, even though the model wave function formalism

works well for moderate filling factors, the discussion of the nature of the ground

state with small filling factors remained controversial, and the mainstream point of

view tended to support a Wigner crystal (WC) phase [33–35], which was actually

one of the phenomena that Tsui et al. carried out their significant experiments to

study in the first place. WCs are proposed to be a candidate with long-range order

by Tao and Thouless in 1983, contrary to the Laughlin states, for the ground states

corresponding to the quantized plateaus [23]. Their approach was afterward found

helpful in the thin-torus limit but can not apply to the generic FQH states [36].

Later Lam and Girvin predicted a transition point between FQH liquids and WC by

comparing their energy under different magnetic fields numerically and confirmed

that the WC phase could finally take control as the ground state when the filling

factor is smaller than 1/7 [37–42]. Meanwhile, the role of the disorders (and thus

the high mobility of electrons) was systematically studied by Paalanen et al., who

verified the critical role of high mobility in the observation and the stabilization

(represented by temperature dependence) of plateaus for the Laughlin state at 1/3

and its particle-hole conjugate partner [43–47].

1.2 Collective excitations: 1985-1988

The nontrivial properties of the quasiparticles foreshadowed that people’s interests

extended quickly to the excitations rather than just the ground states in FQH

phases. At this stage, the main topics were the detailed discussion of the low-

lying neutral and charged collective excitations, a more systematic understanding

of the existing model wave functions, further experiments in more FQH states, and

the attempts to unify the integer and the fractional quantum Hall effect. These

proposals and ideas were like sparks that eventually ignited the explosion of FQH

theories in the early 1990s.
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Apart from the charged excitations, it is natural to consider the excitations of

multiple quasiparticles with an equal number of quasiholes and quasielectrons that

turned out to be neutral in effect. In a simultaneous development, the density-

wave-like excitations, called the roton mode, had been found to be the low-lying

neutral modes in superfluids [48–50]. Such insight from other areas was of great

help to the discovery of the first model wave function describing the low-lying

neutral excitations by Girvin, MacDonald, and Platzman (GMP) in 1985-1986,

which are now called the GMP wave function [51, 52]. The key is the so-called

single-mode approximation (SMA), which allows one to predict a similar magneto-

roton minimum in the spectrum and describe the neutral modes up to the magneto-

roton minimum (thus also valid in the long-wavelength limit) as density fluctuations

from the ground state and. The subsequent research further reveals the geometric

features of the GMP modes, because they can be regarded as the excitations from

the metric fluctuations in Hilbert spaces, which also serves as one of the main topics

in this thesis. We shall introduce a rigorous way to define model Hamiltonians for

these modes in the long wavelength limit, and the full story will be illustrated in

Chapter.4, so we will leave it be for now.

At the same time, many details about the model wave functions have been investi-

gated: The numerical study of the wave functions based on exact diagonalization

had reached 7 electrons for the Laughlin state at ν = 1/3 [53]; Fano, Ortolani,

and Colombo found that the Laughlin wave function on the sphere and the disk

are related by a stereographic mapping, which is now believed to be true for other

wave functions as well [54]. They also derived the closed-form expression for the

Haldane pseudopotential in the lowest Landau level (LLL) on the sphere, which

became very valuable for numerics. Further studies in the systems with finite layer

thickness confirmed the validity of both the Laughlin wave function as the proper

description of the FQH state at 1/3 and GMP’s SMA description of the magneto-

roton modes [55]; The role of spin has been taken into account since Chakraborty,

Pietiläinen and Zhang’s numerical study, which found that spin-reversed states

could be favored in some FQH phases [56]. The trial wave function, the density

configuration, and spectra of collective excitations were also generalized to multi-

component systems and brought more candidates to the ground state [53, 57–59].

Then in 1987, the first systematic textbook about the quantum Hall effect was

published [60]. The progress of experimental conditions such as sample purity and
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cryogenic method led to the first confirmed discovery of an FQH state with an even-

denominator qt the filling factor, ν = 2+1/2, by Willett et al. [61, 62]. This clearly

challenged people’s common point of view, that the fermionic FQH states should

have odd denominators because of the statistics. Another important theoretical

progress was made by Girvin and MacDonald, who found an off-diagonal long-

range order (ODLRO) in the FQH ground states by calculating the singular-gauge

density matrix of the Laughlin state at ν = 1/m [63–65]:

ρ̃ (z, z′) = (1/2πm)e−β∆f(z,z′) |z − z′|−
m
2 (1.2)

where ∆f (z, z′) is the free energy difference between two impurities of charge m/2

and β−1 ≡ m/2 plays the role of temperature. This led to the later discovery that

the FQH phases should be regarded as topological orders, which have become a

hot topic in condensed matter theory nowadays, and also verified the possibility of

using a field-theory approach to describe the FQH phases, which as introduced in

the next stage, was found to be an elegant and powerful method.

Then in the next year, the deep consideration of Haldane to the essential require-

ments for realizing a quantum Hall phase or quantized Hall conductance provided

a toy lattice model consisting of two sub-lattices that can generate QHE with no

net magnetic flux through each unit cell (and thus no LLs) [66]:

H(k) = 2t2 cosϕ

[∑
i

cos (k ·bi)

]
I+ t1

[∑
i

cos (k · ai)σ
1 + sin (k · ai)σ

2

]

+

[
M − 2t2 sinϕ

∑
i

sin (k ·bi)

]
σ3

(1.3)

where ai is the unit vector pointing to neighboring sublattice, b1 = a2 − a3,b2 =

a3−a1,b3 = a1−a2, and σ
i are Pauli matrices (i ∈ {1, 2, 3}), which showed it is the

broken time-reversal symmetry (introduced by the last term in the Hamiltonian)

that matters for the QHE rather than the magnetic field. Such a lattice model was

considered highly unrealistic back then but was found to be extremely similar to

graphene discovered afterward [67, 68]. Another controversy at that time was about

the mechanism and the robustness of the edge current, and especially the evident

absence of back-scattering in experiments [69, 70], the convincing explanation of

which was given in the next few years by Wen.
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1.3 Field theories and phenomenological theo-

ries: 1989 - 1992

The spiral of scientific progress was suddenly straightened by the God of physics -

the theoretical studies of FQHE reached a remarkable climax by the end of its first

decade, a veritable golden age. In this period, the application of new theoretical

tools, such as effective field theories and conformal field theories, brought power-

ful approaches to the discussion on FQH phases and provided novel ways to get

model wave functions for non-Abelian states and the phenomenological composite

fermion theory, on the other hand, epitomized the idea of hierarchy. The rigorous

derivation for the degeneracy of ground states further confirmed the FQH phases’

topological nature. The controversy regarding the proper description of the gapless

edge excitations of most FQH states was also temporarily put to an end by the

Luttinger liquid theory. A prototype of the topological order theory was sketched,

which became one of the most critical topics in contemporary condensed matter

physics.

In 1989, Jain published his paper on a new formalism for organizing the FQH

phases with the filling factor obeying some ordered pattern [71–76]. Even though

experiments had not confirmed the existence of many states, this phenomenological

picture still drew lots of attention due to the intuitive construction of the so-called

composite fermion (CF). The basic idea is that if one thought about what is going

on in the FQH experiment measuring Hall resistance, with the number of electrons

fixed, increasing the magnetic field is equivalent to adding more flux quanta to the

system. When the ratio ν between the number of electrons and fluxes reaches some

specific value, the FQH phase will transform from one to another. The hierarchy

idea proposed by Haldane and Halperin was essentially considering such a dynamic

procedure as the condensation of quasiparticles generated by additional fluxes to

relate different phases. Jain’s idea was to consider the filling factor ν = p/(2mp±1)

with p,m ∈ N+ as indicating the ratio between electrons and fluxes within a

CF, and if the accompanied flux number for each electron is even, this article

will be fermionic. The advantages of this picture are that one can transform the

strong-coupling FQH states of electrons to the effectively one-body IQH state of

CFs, and the model wave function can be written down by following some well-

defined steps termed as composite fermionization. However, the shortcoming is also



Chapter 1. Introduction: the Chronicles of FQHE 9

apparent: the formalism of why there can be emerging CFs formed by electrons and

fluxes in a certain way is unclear. Also, when the magnetic field is strong enough,

the interaction between CFs has to be taken into account, which complicates the

problem. In Chapter.3, we will review the CF theory. More importantly, we

will show another possible and more rigorous approach to the “flux-attachment”

procedure and a generalized composite fermionization that can map states between

sub-Hilbert spaces within a single LL.

The field-theoretical approaches were proposed first by Girvin and MacDonald

[64], but their approach could not provide a satisfactory explanation for many ob-

servations in the experiments, such as the quantized values of plateaus and the

incompressibility of ground states. It was the work of Zhang, Hansson, and Kivel-

son in the same year that offered a reasonable low-energy effective field-theoretical

description to the Laughlin phases [77, 78], who introduced a statistical gauge po-

tential a that couples s fluxes to the electrons, reminiscent of Wilczek’s explanation

of the fractional charge of anyons, and the corresponding gauge field is given by:

b(r) = −ϵij∂iaj(r) ≡ s ·
(
2π

e

)
· |ϕ(r)|2 (1.4)

Such a theory contains a Chern-Simons term of a and thus also called a topological

field theory considering this term does not include any metric tensor [79]. The

field-theory approach to FQH phases has been proved valuable since 1989, e.g., the

effective Chern-Simons theory based on the CF picture was proposed afterward

[80]. More details about the Chern-Simons theory and especially its relation to

another important theory describing the model wavefunctions and gapless edge

modes in FQHE, called the conformal field theory (CFT), can be found in Sec.3.2.

As might have been noticed by the reader, the word “topology” has appeared

several times. This in fact implies the possibility to use several parameters to

distinguish different FQH phases, because there are no local order parameters for

these phases, such as the two integers p and q whose ratio gives the filling factor

ν. In 1990, Wen and Niu further tested the dependence of the ground state de-

generacy of FQH states to the topological structure of the background manifold

[81], and derived the explicit expression based on Haldane’s former argument that

the ground state degeneracy of the FQH phase at p/q on the torus is at least q

[82]: the degeneracy on a manifold with genus g should be at least qg. Another
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impactful work by Wen at the same time is the discovery of the low-energy ef-

fective and solvable description to the edge modes called chiral Luttinger liquid,

which is different from the ordinary Fermi liquids and exhibits novel features such

as spin-charge separation [83–87]. Afterward, Wen found that the effective theo-

ries of both the bulk and the edge of an FQH phase are closely relevant to each

other [87–89]. This idea was later well-illustrated in the study of the bulk-edge

correspondence in topological systems [90]. Then in 1992, Wen and Zee derived

another topological coefficient of FQH states, called the topological shift S, which
is a finite rational number depending on the topology of the space and influences

the number of orbitals within a single LL [91].

Compared to the condensed matter community’s enthusiasm for superconductivity,

superfluidity, and quantum Hall effect at that time, the high-energy physicists

were focusing on equally exciting topics like string theories and supersymmetry,

which also brought vitality to many mathematical topics. In Witten’s study of the

Jones polynomials, he first noticed the close relation between CS theory and CFT

under some conditions [92], which naturally drew people’s attention to the newly-

discovered phenomenon whose low-energy effective theory was exactly described by

a CS action. In 1991, Moore (who is known as a great mathematical physicist) and

Read proposed a model wave function for an FQH state with an even-denominator

based on the similarities between the wave functions and conformal blocks in CFT,

written as [93]:

ψMR(z) ∝ Pf

(
1

zi − zj

)∏
i<j

(zi − zj)
2 (1.5)

which is now called the Moore-Read state or the Pfaffian (Pf) state (with the

Gaussian factor dropped), and also similar to a BCS wave function in the real space

[94, 95]. The model Hamiltonian was found to be a three-body pseudopotential

[96]. Note that the model wave functions before this year were either written down

from nowhere or adapted from the existing one, but since CFT is introduced to

FQH, people have got more methods to formally write down model wave functions.

Apart from these theoretical progresses, in 1992 two research groups generalized

the experimental setup to more degrees of freedom and observed an FQH state at

ν = 1/2 in double-layer electronic systems [97, 98], the ground state of which is

now conjectured to be the 331 state proposed by Halperin [99–102].
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1.4 Harvest time: 1993 - 2003

In the next few years from the “golden age” of FQH theories, there were a lot of

things to digest and test, with many significant discoveries on the experimental

side and various applications to the existing theoretical formalism. The study of

topological orders has been generalized to more cases and physicists were also ab-

stracting the theories based on more serious mathematics such as algebraic topol-

ogy. Here we will introduce some of the progress that is also important for the

discussion in this thesis.

Richer algebraic structures in QH systems other than the Heisenberg algebra of the

ladder operators were proposed by Cappelli, Trugenberger, and Zemba in 1993, who

found that the product of ladder operators could form aW∞-algebra, and the simi-

lar algebra was generalized to FQH afterward [103–107]. In fact, the GMP algebra

of density operators is isomorphic to a W∞-algebra as well, which reveals their

nature as area-preserving deformations of the incompressible phase and partially

explains why there can be analytic expressions of physical quantities for the SMA

wave function including those derived in this thesis (more details can be found

in Appendix.B). Meanwhile, the first explicit signature of neutral collective exci-

tations was captured in the inelastic light scattering experiments carried out by

Pinczuk, Dennis, Pfeiffer, and West, which verified the earlier predictions made

by GMP for the low-lying collective excitation of the Laughlin state at ν = 1/3

[108]. Even now scattering experiments still play an important role in probing the

neutral excitations [109–114], such as the graviton mode (the magneto-roton mode

in the long-wavelength limit) discussed in this thesis, we will discuss more the ap-

plication of different particles in the scattering experiments for resolving various

features such as the chirality in Chap.5.

Also, since the 1990s there have been several attempts to measure the fractional

charge of the quasiparticles predicted by Laughlin, but none of the experiments,

including measuring resistance fluctuations with the magnetic field, resonant tun-

neling through a quantum anti-dot and so on [115–120], have been fully convincing

to the community until the results shown by two independent groups. The exper-

iments were carried out with quantum shot-noise measurements to the 2DES in a

GaAs-AlGaAs heterostructure, by de-Picciotto et al. in Israel [121], and Samina-

dayar et al. in France [122] (which also led to the first Nobel prize belonging to



12 1.4. Harvest time: 1993 - 2003

the FQHE, shared by Störmer, Tsui and Laughlin in 1998). Such a method was

proposed by Tsui firstly [60] and thanks to the comprehensive understanding of the

edge of FQH droplet as a chiral Luttinger liquid (which was also confirmed by the

power-law behavior of the tunneling conductance at the edge of the Laughlin state

by Chang, Pfeiffer, and West in 1996 [123, 124]), the experimentalists successfully

measured the noise power proportional to a fractional charge e/3 for the Laughlin

state at ν = 1/3. In comparison, the measurement to the fractional statistics of

anyonic quasiparticles has recently got some preliminary results, but still under

debate [120, 125–129].

Another important progress relevant to the Luttinger liquid nature of the edge was

made by Kane and Fisher in 1997 [130], who found another topological invariant

that can be used to distinguish different FQH phases (which can be regarded as one

of the main tasks in the studies to FQHE as introduced above), called the thermal

Hall conductance KH , which shows the difference between the number of chiral

edge currents and thus can be a positive or negative integer. But in 2000 Read

and Green derived the thermal Hall conductance of the Moore-Read state when

studying the pairing of CFs in this state (as in BCS paired states [95, 131, 132]), and

found that it should be a half-integer due to the non-Abelian nature [94, 133, 134],

which has been confirmed by experiments [135, 136]. Thus this quantity became

an important index to distinguish the nature of non-Abelian states because Hall

conductance experiments are incapable of detecting the signature of neutral non-

Abelions, and was afterward found to be relevant to the central charge of the

CFT describing the FQH phase as well [137]. Furthermore, they also studied the

analogous FQH state of a d-wave paired state of spinless bosons in detail, which is

now called the Haffnian state [138–140].

As introduced at the beginning, physicists are very interested in the phases with

broken symmetries, such as the Wigner crystal (WC) phase in a magnetic field.

There have been more symmetry-broken phases proposed by using Hartree-Fock

methods in the 90s, such as bubble phases, stripe phases, crystalline phases, and

nematic phases in higher LLs [141–145], which are believed to be related to the

geometric degrees of freedom in FQH phases as well.



Chapter 1. Introduction: the Chronicles of FQHE 13

1.5 Topological models and new platforms: 2004

- 2007

The cumulative results about the topological order, both theoretical and exper-

imental, originated from the discovery of FQHE and contributed to the estab-

lishment of the abstract paradigm describing topological orders, such as the toy

models (Kitaev chain [146], toric code [147, 148], etc), the generalization to the

Altland-Zirnbauer (AZ) ten-fold symmetry classification for fermions [149], the

following application of the group cohomology and tensor categories in this field

[150–153], and possible experimental realizations such as by using quantum wires

[154–156]. Another topic started from then on is the widespread applications of

the ideas in QHE to other systems, some of which have been listed in Table.1.1 for

reference, among which the most successful one could be the prediction and the

following realization of the quantum spin Hall effect, or topological insulators as its

3D generalization, considering their potential application in dissipationless circuits

[90, 157–159].

As for the progress in FQH, the discovery of graphene in 2004 provides a new plat-

form to study QH states with less extreme conditions at room temperature [160–

164], and meanwhile simulating FQH phase with cold atoms in optical lattices was

proposed [165–167], which could lead to the realization of bosonic FQH states in

experiments with the rapid developments in manipulating atomic interactions and

creating synthetic gauge potentials [168–170]. Furthermore, one important thing

that brought FQHE to more physicists’ wishing lists is that people noticed the

important role of non-Abelian excitations in realizing topological quantum com-

putation [171], so the discussion on how to properly probe the quasiparticles with

non-Abelian statistics became a hot topic [137, 172–175]. In 2005 Das Sarma,

Freedman, and Nayak proposed an experimental approach to the measurement

of the non-Abelian statistics of the Moore-Read state, and the braiding of the

quasiparticles in this experiment was found to support robust topological qubits

[176]. The corresponding experiment has not been carried out, while many fol-

lowing proposals about how to detect the non-Abelian quasiparticle statistics by

using interferometric experiments have been put forward [134, 177], and it should

only be a matter of time to see a concrete result. The fractional charge e/4 of the

quasiparticles in the Moore-Read state, experimentally confirmed by Dolev et al.
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in 2008 [178, 179], further convinced people of the promising applications of this

state.

1.6 Numerics, entanglement, and geometry: 2008

- now

It is really hard (and also arrogant) to tell what are the most important questions

at present, which can only be left for the future to distinguish. So here we will try

introducing several main aspects in the recent research of FQHE.

Firstly, with the rapid development of information technology and engineer’s en-

deavor to push the limit of Moore’s Law, now the most economic and approachable

way to simulate FQH phases is by using computers. Almost all the mainstream

algorithms such as ED (as in this thesis), DMRG [180–182], Monte Carlo [128, 183–

185], etc. have been adapted for studying the FQHE, but because of the strong-

coupling nature of this problem, the largest system size available for numerical

calculations is still far away from the usual experiments, let alone the thermody-

namic limit. Recently, quantum computers have also been found to be an available

platform for the simulation of FQH states and their dynamics, the difficulty of

which, however, is that the construction of these states involves non-unitary op-

erators, so only the simplest states like the Laughlin states have been realized on

quantum computers so far [186, 187].

Besides the hardware and algorithm issues, physicists have found more physical

ways to accelerate the simulation of FQH states. In 2007, Simon, Rezayi, and

Cooper generalized Haldane’s two-body pseudopotential to rotationally-invariant

many-body pseudopotentials, which provides an efficient way to construct the

model Hamiltonians numerically for simulating the effect of LL mixing [188], etc.

They also formally constructed a group of wave functions defined by symmetric

analytic function with the lowest degree that vanishes as at least p powers when

q particles coincide [189]. Another non-Abelian model state at ν = 2/5 was con-

structed from the nonunitary minimal modelM(5, 3) by Simon et al., which is thus

predicted to be gapless and named as the Gaffnian state [139, 190–194]. We will try

analyzing the gaplessness of this state by combining analytical and numerical tools

in Sec.4.8. Meanwhile, the experimental signature of this state remains elusive.
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Year Progress
Proposal

(Discovery)
1879 (E) Lorentz Force (Classical) Hall effect

1880 (E)
Spontaneous
magnetization,

spin-orbit coupling

Anomalous Hall effect
(AHE)

1980 (E)
1981 (T)

Landau quantization
Integer quantum

Hall effect
(IQHE)

1982 (E)
1983 (ψL)
1987 (ψ 5

2
)

1989 (CF/TFT)
1991 (CFT)

Model wave functions,
CFT, CS theory,

composite
Fermion, etc.

Fractional quantum
Hall effect
(FQHE)

1971 (T)
2004 (E)

Spin-orbit coupling
Spin Hall effect

(SHE)

2005 (T)
2007 (E)

Spin-orbit coupling,
BHZ model,

Kane-Mele model,
SPT order, etc.

Topological insulator (TI)
/Quantum spin

Hall effect (QSHE)

2005 (T&E)
Spin-phonon coupling,

observed in
Tb3Ga5O12

Phonon Hall effect

2005 (T)
Orbital angular momentum

decoupled with spin
Orbital Hall effect

2008 (T)
2013 (E)

Spontaneous
magnetization;
observed in
(Bi,Sb)2Te3

Chern insulator (CI)
/Quantum anomalous

Hall effect
(QAHE)

2010 (T) Righi-Leduc effect
Thermal Hall effect

(THE)

2011 (T)
2018 (E)

Flat Chern bands;
observed in BLG/hBN

and MATBG

Fractional Chern insulator
(FCI)

2014 (E)
Observed in

monolayer MoS2
Valley Hall effect

2017 (E)
Observed in

monolayer MoS2
Exciton Hall effect

Table 1.1: Some of the members in the great Hall effect family. The
first column provides the time when the corresponding effect was proposed (T
for theory) or observed (E for experiment). For the main topic of this report,
FQHE, a more detailed timeline of the important methods can be found in
the first chapter of this thesis. The main methods, preliminary explanation, or
experimental platform of each effect can be found in the second column. This
table may never be complete as new effects are being proposed every year.
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Figure 1.2: Calculating the entanglement spectrum. One can partition
one system into two parts, A and B. Then by tracing out the degrees of freedom
of one subsystem in the quantum state |ψ⟩, one can get the reduced density
matrix, the eigenvalues of which give the entanglement spectrum.

In 2008, Bernevig and Haldane found that many first-quantized model wave func-

tions of FQH states [195–198], including the Laughlin state and Moore-Read state,

can be written as a species of symmetric polynomials called the Jack polynomials

(jacks), which will be introduced in Sec.3.4.3. The key point of this discovery is that

one can construct these model wave functions following some well-defined patterns,

and the states can be efficiently stored in computers. The binary representation

of the basis brought huge convenience for the preparation of diagonalization as

well. Following this approach, the numerical construction of the neutral modes

was proposed by Yang et al. in 2012 [199], which can be used to simulate the

magneto-roton mode accurately as explained in Sec.4.2. Then the model Hamilto-

nians were generalized to anisotropic systems [200–202], the case without Galilean

invariance [203], etc. Classical constraints to the basis in a given FQH state were

also proposed as the local exclusion conditions (LEC) by Yang in 2019, which also

works for the states that jacks cannot describe [204, 205]. Thus the major question

in physics is about how to universally and efficiently construct the states and the

model Hamiltonians.
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The lattice analog of FQHE was proposed by Regnault and Bernevig in 2011, which

contains a flat Chern band similar to the LLs in FQH states and is named the

fractional Chern insulators (FCI) [206]. Most of the so-derived formalisms working

for FQH have been readily translated to these systems, such as the Laughlin-like

states, three-body interactions that induce Moore-Read-like phases, and so on [207–

210]. The experimental observation of FCI was first realized in the Bernal-stacked

bilayer graphene aligned with hexagonal boron nitride with a large magnetic field in

2018 [211], and later it was also found in the magic-angle twisted bilayer graphene

(MATBG) in 2021 [212], which can hold FCI phases even without a magnetic

field. Also as a lattice model, FCI could be more tunable in practice. Thus the

close relation between FCI and FQHE makes it tempting to consider them as

supplements for each other, especially in experiments.

It has been realized that it is the entanglement rather than the correlations that

govern the topological orders [213], so the quantum entanglement in topological or-

ders has been systematically studied since 2000, mainly in the form of (topological)

entanglement entropy [214–220]. Li and Haldane proposed another quantity that

contains more information called the entanglement spectrum in 2008 [221], which

is the spectrum of the reduced density matrix and can serve as another topological

signature for distinguishing different FQH phases as introduced in Sec.3.2. Calcu-

lating the entanglement spectrum requires partitioning a system into parts, which

can generate pseudo-edges in between, so it is natural for this spectrum to provide

edge properties of the state as shown in Fig.1.2. The signature in the entanglement

spectra also supports the bulk-edge correspondence in topological orders. Further-

more, in 2010, the proper definition of an entanglement gap for the Laughlin states

and the Moore-Read state in the thermodynamic limit was given by Thomale et al.

[175]. This requires pushing the system to the conformal limit by using unnormal-

ized bases in the wave function, which can eliminate the effect of the length scale.

Such an operation opens a stable gap between the low-lying model states and the

high-energy Coulomb modes, and the behavior of the entanglement gap provides

another method to distinguish the transition between different phases. Similar

to the energy spectrum, two states are conjectured to share the same topological

structure if one can deform their entanglement spectra from one to another without

closing the entanglement gap [89, 222–226]. However, the proper definition of such

a gap for more phases is pending. Further studies about the topological features
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also lead to the matrix product state representation of some FQH phases [227–229],

which is also helpful for the construction of FQH states on quantum computers.

The last thing we would like to introduce, also the main topic of this thesis, is

the geometric degrees of freedom in FQH phases, which most physicists initially

omitted because people cared more about the topological features. In 2011, Hal-

dane summarized his results of the geometry in FQH phases by introducing the

metrics of the kinetic energy (an effective mass tensor) and the interaction term

(controlled by the medium) in the Hamiltonian, which were presumed to be iden-

tical until then [230]. Haldane argued that these two independent metrics do not

have to be equal and if they are not, the guiding-center degrees of freedom (which

is relevant to the physics within a single LL and thus crucial for discussing FQHE)

will be governed by an intermediate metric between the two above, which effec-

tively defines the shape of the FQH droplet and the intrinsic correlations. Thus

the actual ground state should be the one with the metric giving the lowest energy

rather than the isotropic one customarily considered. Now that we can define a

“shape” for an FQH droplet, it is natural to consider its response to shear defor-

mations, the quantitative description of which is captured by the Hall viscosity

that contributes to the incompressibility as well [231–236]. The GMP modes were

found to be closely related to the geometric aspects of FQH because of their emer-

gent graviton signatures (as explained in Chap.4). In this thesis, we will call them

graviton modes to understand them as the excitation from metric fluctuations in

the Hilbert space. One can use effective gravitational field theory to describe these

modes [237, 238], but instead, we will try establishing a rigorous microscopic theory

for the graviton modes and the multi-graviton feature recently found in numerics

as shown in Chap.4 and Chap. 5, which can be an excellent supplement to the

field-theoretical approach.

1.7 What’s next?

Forty years old is a blessed age in Chinese culture because it is believed that people

should have no more perplexities about their lives or themselves at this age. In

the case of the studies to FQHE, however, we might still be far away from such

optimism. As we can see, an unusual point in the research on FQH is that almost all

the important paradigms in this field have been proposed within 10 years since the
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discovery of FQHE. Sadly, this is reflected in the fact that the research nowadays

is mostly following the ways paved by the pioneers and tinkering with the existing

formalism here and there. From this point of view, a unified theory about FQH

phases, if there is one, might require some novel paradigms and new mathematics.

Apart from the topics introduced in the last section, many basic and essential

questions remain to be answered in FQHE. Here we will only list some of them

echoing in the author’s mind from time to time:

• Is there a fractal nature in FQH states? As we have seen in the various

attempts to find hierarchies in the FQH states, and the discretized version

of QH systems that show a Hofstadter’s butterfly, there seems to exist some

self-similarity structure among the FQH phases [239–241]. So how can we

confirm it? What can we learn from such a feature?

• What is the nature of CFs? Although the CF theory has been quite successful

and popular, they are still considered phenomenological because the reason

why the electrons would combine with the fluxes in specific ways remained a

conundrum, even if there has been evidence of observing CFs in experiments.

Furthermore, the step of projecting the wave function to a single LL has

not been rigorously proven to be valid as well. So again, there still exist

interactions, although weak, between CFs, but how to adequately describe

them?

• Is it possible to realize an arbitrary model Hamiltonian? And how, if possible?

The model Hamiltonians provides rigorous definitions of the model states. It

will be constructive to observe things like the transition of low-lying excita-

tions in the experiments if we can tune the Hamiltonian freely as explained

in Sec.4.7. The progress in quantum computers might bring a promising way

to realize this.

• How to numerically simulate FQH phases more efficiently? This is not en-

tirely a physical issue, but there could be some insights physicists can offer.

• Does a gapless FQH phase exist in bulk or not? The Gaffnian state at ν = 2/5

constructed from the minimal modelM(5, 3) is believed to be a gapless state.

But the Jain state at the same filling factor is still gapped [242, 243]. Another

example is the CF-Fermi liquid [244, 245]. Such gapless phases, if exist, could
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be the phase transition points between two phases, which requires further

experiments to verify.

• What is the correct description of the FQH state at ν = n + 1/2? There

have been several candidates for this state, the Pfaffian (Moore-Read) state

[93, 94], the anti-Pfaffian state [246, 247], and the PH Pfaffian state [248–

250]. The study of the systems with LL mixing tends to support that the

anti-Pfaffian state is favored [251–254], the thermal Hall signature of which,

however, does not match the experiment without proper modifications [134–

136]. There are also proposals of a bubble phase consisting of Pfaffian and

anti-Pfaffian states, but no exact answer has been found [255, 256].

• How to understand the role of LLs in forming FQH phases? It has been

noticed that some of the FQH phases with specific filling factors (here, by

filling factors, we mean ν̃ ≡ νmodN , where N is the LL index) can only be

observed in specific LLs, for example, the half-filling state.

• How to extract more useful information from the excited states? Just like

the GMP modes constructed from the ground state can provide geometric

information about the FQH phase, can we find more in other states?

• · · ·

Of course, this list can be expanded freely. But the ultimate question has not been

answered, or maybe we have not even found the proper way to ask it:

• What is the complete description of the FQH phases? It should be able

to explain and predict why the incompressibility gap only opens at specific

filling factors with the corresponding signatures that can be observed in ex-

periments, reveal why and when the quasiparticles can show non-Abelian

statistics and combine the topology, the geometry, the entanglement, and all

the other aspects into a coherent framework, etc.

The worst possible reason why we haven’t got a unified formalism of FQHE could be

that the states with different filling factors have to be described by various theories.

But most physicists still believe that all the FQH phases can be described in the

same manner, which might turn out to be a universal model wave function or some

exotic pairing or binding formalism between electrons and fluxes. So we hope this

thesis can contribute a bit to the approach to the final answer.



Chapter 2

Microscopic Approaches to

Fractional Quantum Hall Effect

2.1 Brief review on the experimental setup of

QH systems

One could expect it hard to realize a Quantum Hall (QH) liquid in experiments

because of the relatively extreme conditions, i.e., a pretty low temperature (T → 0

ideally in systems like MOSFETs [3]. On the other hand, integer quantum Hall

effect can be realized at room-temperature in graphenes [160], but we will ignore

this for now) and a very high magnetic field (B ∼ 10 T, and to see how large it is,

1 T ≈ 4.836 × 1014 magnetic flux quanta per square meter). Besides, a material

with high purity is also required if one is expecting to see the plateaus in the Hall

resistivity [257]. Here we would like to discuss the physical reasons and relations

of these conditions considering the quantum Hall effects were initially discovered

from experiments, which can also reveal the essential requirements for realizing an

FQH liquid and constructing a proper theoretical model:

• Two dimensions: It is necessary for the formation of discrete LLs, which is

the key to explaining the Integer Quantum Hall (IQH) effect and also the

origin of the abundant physics in Fractional Quantum Hall (FQH) phases.

Note that two-dimensional (2D) space here is effective because the “real” 2D

space is pointless in our four-dimensional space-time, considering there is no

21
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way to manipulate or probe anything within such an infinitely thin region.

In practice, as long as the degree of freedom along z-direction (orthogonal

to the 2D space considered) is completely independent (for comparison, the

other two dimensions are not independent but coupled by the magnetic field)

and strictly restricted, i.e., staying at one eigenstate with no transitions to

other ones, we can regard the system as 2D.

• Electrons as the basic particles: The earliest realization of FQH phases was

by using 2D electron gas [3]. However, the statistics of underlying particles is

not crucial since it is also possible to study bosonic FQH phases (conceptually

by using photons) [167, 258–260]. In this thesis, we will assume the particles

are electrons, meaning only the Coulomb interaction is considered.

• Low temperature: The temperature gives an additional energy scale compet-

ing with the main one set up by the magnetic field. Thermal fluctuations can

excite the low-lying states or even “unfreeze” the degrees of freedom along

z-direction, introducing different sets of LLs to the spectrum. These could

eventually destroy the discrete LLs when they accumulate to a specific den-

sity. Another reason to lower the temperature is to increase the mean free

path (∼
√
T ) of the electrons for experimental measurements.

• Strong magnetic field: The magnetic field defines the unique length scale in

the QH system, i.e., the magnetic length ℓB, invokes the non-commutative ge-

ometry (forms the LLs which relate two orthogonal directions to each other)

[261], and results in the quenching of kinetic energy when it is strong enough.

Meanwhile, it will inevitably break the time-reversal symmetry, which has

physical implications such as the different energy costs of charged excita-

tions, the Hall viscous force, etc. Still, it is not required for the existence of

topological orders as verified by the Chern insulators [66, 206].

• Disorder: The disorders provide another energy scale that is unavoidable in

experiments but is expected to be weak because it is irrelevant to the physics

of FQH phases. However, suppose one expects to see clear plateaus in the Hall

resistivity of some incompressible ground state. In that case, it is necessary

to introduce a certain amount of disorders that can break the translational

invariance and cause Anderson localization [262, 263]. Otherwise, the Hall

resistivity can tell us nothing but the density of the electrons in the system,

as can be derived concerning the Lorentzian or even the Galilean invariance.
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The most significant feature in Quantum Hall experiments is the robustness of the

quantized plateaus in the Hall resistivity, which inspired the idea of introducing

topology into physics. Strictly speaking, all of the requirements above can find

some corresponding substitutes, which can naturally give other topological phases

because all these conditions are essentially adopted to realize a nontrivial Chern

number in the bands [264]. We shall see how to construct a reasonable micro-

scopic Hamiltonian based on our analysis of the experimental conditions in the

next section.

2.2 Basic model and energy scales

2.2.1 Minimal coupling

Here we briefly introduce how to include the effect of the magnetic field in our

discussion. Consider a generic action along the path γ:

S[γ] =

∫
γ

dtL (q(t), q̇(t), t) (2.1)

with the dynamic equation given by the Euler-Lagrange equation:

∂L

∂qi
(t, q(t), q̇(t))− d

dt

∂L

∂q̇i
(t, q(t), q̇(t)) = 0, i = 1, . . . , n (2.2)

From the classical theory, we know that a velocity-dependent Lorentz force will act

on the electrons, which bends the trajectory of the electrons. Thus the Lagrangian

and the generalized force should be:

L =
1

2
mṙ2 − U(r, ṙ), F =

(
− ∂

∂r
+
d

dt

∂

∂ṙ

)
U (2.3)

where r denotes the real-space coordinate. This approach is called minimal cou-

pling because only q, the zeroth-moment of charge, is considered. From Maxwell’s

equations, the Lorentz force can be written as:

F = −q(E+ v ×B) =

(
−∇+

d

dt

∂

∂v̇

)
[qϕ− q(v ·A)] (2.4)
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where A is the vector potential. Thus the canonical momentum is given by:

p =
∂L

∂v
= mv − qA (2.5)

In conclusion, if one only takes the electric charge of a charged particle in the

magnetic field into account, the covariant momentum should be defined as:

π̂ = p̂+ qA = −iℏ∇+ qA (2.6)

2.2.2 Full Hamiltonian

One can formally decompose the Hamiltonian of a QH liquid into:

Ĥ = Ĥkinetic + ĤCoulomb + ĤZeeman + Ĥdisorder + Ĥthermal

≡ Ĥk + ĤC + Ĥs + Ĥd + Ĥt

(2.7)

To discuss the physics of FQH phases, we need to simplify this Hamiltonian by

making some assumptions. Firstly we assume that the system should be spin-

polarised, which will be naturally fulfilled when the magnetic field is strong, so

the third term about the Zeeman effect can be ignored. Secondly, as explained

above, the disorders are unnecessary for the exciting physics of FQH phases (though

unavoidable in reality). Thus in our theoretical model, we will set the system to be

perfectly uniform. Finally, we can work in a zero-temperature system to suppress

the last energy scale proportional to temperature (Note that generically the effects

of temperature cannot be written as a single term in the Hamiltonian because it can

influence the parameters in a complicated way. So here, we only use Ĥt to denote

these effects formally.). In short, we are constructing a theory for a spin-polarised,

homogeneous and zero-temperature FQH liquid.

To write down the explicit form of the Hamiltonian, one will normally impose some

auxiliary restrictions to the system, such as the geometry, the symmetries, and the

boundary conditions of the 2D manifold, which can help to choose a proper gauge.

Note that the physics should not depend on the gauge choice so that a gauge-free

theory will be more generic, and no unnecessary details will be brought into our

discussions. Furthermore, no specific symmetries should be assumed either, i.e., we

will remove the non-generic Galilean invariance and isotropy from the system to
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expose the geometric properties of QH phases so that only the metric-independent

inversion symmetry is assumed to define the guiding center coordinates unambigu-

ously.

2.3 Gauge-independent approach

Classical closed trajectories indicate the correlation between different directions,

which can be expressed as the non-commutativity between the operators in the

context of quantum mechanics. This is seen in the dynamics of 2D electrons moving

in a magnetic field, where x-direction and y-direction are not independent. Hence,

it is no longer inconvenient to write down the equations of motion along orthogonal

directions. Instead, one can decompose the coordinate into two commutative parts,

cyclotron coordinates and guiding center coordinates, which are given by [257]:

ˆ̃Ra = r̂a + ϵabπ̂b,
ˆ̄Ra = −ϵabπ̂b (2.8)

where a and b denote spatial coordinates along x or y direction. r̂ and π̂ are the

real-space displacement and the covariant momentum, the commutation rule of

which is given by:

[r̂aj , π̂jb] = iδab δij, [π̂ia, π̂jb] = i · eB · δijϵab (2.9)

Here i and j denote the particle indices. For simplicity, we will set the magnetic

length ℓB = 1/
√
eB = 1. One can observe the Heisenberg algebra introduced in

Appendix.A. The cyclotron coordinates and guiding center coordinates are also the

generators of the magnetic translation group:

T̃ = eiqa
ˆ̃Ra

=⇒ T̃ ˆ̃RaT̃ † = ˆ̃Ra + ϵabqb

T̄ = eiqa
ˆ̄Ra

=⇒ T̄ ˆ̄RaT̄ † = ˆ̄Ra − ϵabqb
(2.10)

The independence of cyclotron coordinates and guiding center coordinates can be

seen from:

[ ˆ̄Ra, ˆ̃Rb] = 0, [ ˆ̃Ra, ˆ̃Rb] = iϵabδij, [ ˆ̄Ra, ˆ̄Rb] = −iϵabδij (2.11)
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which clearly shows a broken time-reversal symmetry. These commutations also

remind us of the Heisenberg algebra, so it is natural to define two sets of ladder

operators as:

â = ω̃∗
a
ˆ̃Ra, â† = ω̃a

ˆ̃Ra; b̂ = ω̄a
ˆ̄Ra, b̂† = ω̄∗

a
ˆ̄Ra (2.12)

Here both the complex structures should obey ϵabω̃∗
aω̃b = ϵabω̄

a∗ω̄b = i correspond-

ing to different metrics, which will reserve the commutation rules between the

ladder operators, for example:

[b̂, b̂†] = [ω̄a
ˆ̄Ra, ω̄∗

b
ˆ̄Rb] = −iϵabω̄aω̄

∗
b = 1 (2.13)

A special case is that when the system is rotationally invariant, the coefficients can

be determined as ω̃ = ω̄∗ = 1√
2
(1, i) with isotropic metrics g̃ab = ḡab. Otherwise,

one can write down the unimodular metric as:

ḡab = ω̄∗
aω̄b + ωaω̄

∗
b ; g̃ab = ω̃∗

aω̃b + ω̃aω̃
∗
b (2.14)

In the high-field limit (ℏωB >> UC), the low-lying states can be written as the

tensor product of the cyclotron and the guiding center degrees of freedom |Ψ0,m⟩ =
|ψ̃0(g̃)⟩ ⊗ |ψm(ḡ)⟩ [230]. Once equipped with these metrics, we can define the

azimuthal angular momentum operator as:

L̂ = ϵab · r̂agbcp̂c (2.15)

which can be separated into the cyclotron and the guiding center angular momen-

tum operators:
ˆ̃L =

1

2
g̃ab

ˆ̃Λab; ˆ̄L =
1

2
ḡab

ˆ̄Λab (2.16)

as the corresponding generators of rotation:

Θ̃ = eiθL̃ =⇒ Θ̄ ˆ̃RaΘ̄† = cos θ · ˆ̃Ra + sin θ · ϵabg̃bc
ˆ̃Rc

Θ̄ = eiθ
ˆ̄L =⇒ Θ̄ ˆ̄RaΘ̄† = cos θ · ˆ̄Ra − sin θ · ϵabḡbc ˆ̄Rc

(2.17)

where we have defined

ˆ̃Λab =
1

2

{
R̃a, ˆ̃Rb

}
; ˆ̄Λab =

1

2

{
ˆ̄Ra, ˆ̄Rb

}
(2.18)
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These operators are generators of linear area-preserving deformations, which form

the sl(2;R) Lie algebra [265]:[
ˆ̃Λab, ˆ̃Λcd

]
= i
(
ϵac ˆ̃Λbd + ϵad ˆ̃Λbc + ϵbd ˆ̃Λac + ϵbc ˆ̃Λad

)
[
ˆ̄Λab, ˆ̄Λcd

]
= −i

(
ϵac ˆ̄Λbd + ϵad ˆ̄Λbc + ϵbd ˆ̄Λac + ϵbc ˆ̄Λad

) (2.19)

The metric g̃ab and ḡab originate from the complex structure required to define the

ladder operators and the corresponding coherent states, which can be intuitively

interpreted as describing the “shape” of Landau orbitals. Note that they are not

the same as the quantum geometric tensors or Fubini-Study metrics Gab [266], which

are induced by the Hermitian products defined on complex projective spaces and

measure the “distance” between states on the quantum state manifold generated

by some Lie group attached to a given state, even though Gab can be expressed as

a function of gab and the orbital spin.

To describe the spatial distribution of particles, one can define the density operator

in the real space as:

ρ̂r ≡
N∑
i=1

δ2 (ri − r) (2.20)

where i is the particle index. It is more convenient to use the Fourier transform of

the real-space density operator when writing down the interactions:

ρ̂q =

∫
d2r · e−iq · r · ρ̂r =

N∑
i=1

eiqar̂
a
i (2.21)

which can be separated into the cyclotron and guiding canter density operators

defined by:

ˆ̃ρq =
N∑
i=1

eiqaR̂
a
i ; ˆ̄ρq =

N∑
i=1

eiqaR̂
a
i (2.22)

These operators obeys the Girvin-Macdonald-Platzman (GMP) algebra (isomor-

phic to the W∞-algebra as introduced in Appendix.B) [51, 52]:

[
ˆ̃ρq1 , ˆ̃ρq2

]
= −2i sin

(
1

2
q1 ∧ q2

)
ˆ̃ρq1+q2 ;

[
ˆ̄ρq1 , ˆ̄ρq2

]
= 2i sin

(
1

2
q1 ∧ q2

)
ˆ̄ρq1+q2

(2.23)

where the wedge product q1∧q2 = ϵabq1aq2b. Note that there is a sign difference in

the commutation relations. This algebra shows highly nontrivial properties, as we
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shall introduce in the following chapters. It is not hard to see that the regularised

guiding center density operators also obey the same algebra:

δ ˆ̄ρq = ˆ̄ρq − ⟨ ˆ̄ρq⟩0[
δ ˆ̄ρq1 , δ ˆ̄ρq2

]
= 2i sin

(
1

2
q1 ∧ q2

)
δ ˆ̄ρq1+q2

(2.24)

where ⟨ ⟩0 denotes the expectation value with respect to the ground state.

Because the Laplacian on a generic manifold is given by:

∇2 = ∇a

(
g̃ab∂b

)
=

1√
g̃
∂a

(√
g̃g̃ab∂b

)
(2.25)

we can write down the many-body kinetic energy Hamiltonian with a constant and

unimodular cyclotron metric and thus equally-spaced LLs as:

Ĥk =
1

2m

N∑
i=1

g̃abπ̂iaπ̂ib (2.26)

In this case, the effective mass tensor determines the energy scale. Note that in a

crystalline system, the kinetic energy can be expanded as an infinite series of even-

order terms of the cyclotron coordinates. All the physics of IQHE are embedded

in this Hamiltonian, so essentially it is a one-body problem.

Once the magnetic field is strong enough to quench the kinetic energy, the Coulomb

interaction between electrons will take effect and endow the system with a strong-

coupling nature, given by:

ĤC =
∑
i<j

e2

ϵ|r̂i − r̂j|
(2.27)

where ϵ is the permittivity that determines the Coulomb metric. One cannot

precisely solve the system with more than two particles, let alone in the thermo-

dynamic limit, even if the full Hamiltonian has been written down because of the

exponentially increasing computation resources required to solve a strong-coupling

system with more particle numbers. However, solving a relatively small system

using exact diagonalization is still possible. If the system is rotationally invariant,

we usually use the second-quantized form of the interaction term by labeling the

orbitals with the angular momentum quantum number m, so the basis is given by:

|m1,m2, · · ·mN⟩ ≡ ĉ†m1
ĉ†m2

· · · ĉ†mN
|vac⟩ (2.28)
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where c† denotes the fermionic creation operators and |vac⟩ is the vacuum state.

The genetic two-body interaction Hamiltonian Ĥint can be written as:

Ĥint =
1

2

∑
m1,m2,m3,m4

ĉ†m1
ĉ†m2

ĉm3 ĉm4 · ⟨m1,m2| V̂ |m3,m4⟩

=
1

2

∑
m1,m2,m3,m4

V m1m2
m3m4

· ĉ†m1
ĉ†m2

ĉm3 ĉm4

(2.29)

Thus the key is to solve the matrix elements of the potential V m1m2
m3m4

. On the

other hand, one can also write down the microscopic form of the interaction in the

momentum space. We shall see how this can help to deal with the interactions in

the following section.

2.3.1 A case study: matrix elements of a single particle

δ-potential on the LLL

Here we present an example of how to write down the matrix element of a given

potential in an isotropic system, which means that we have the angular momentum

as a good quantum number to label the single-particle orbits |n⟩, so the density

operator matrix element in this basis is given by [267]:

⟨m|ρ̂q|n⟩ =
√
m!

n!
(i · q̃)n−mL(n−m)

m

(
Q̃
)
e−

1
2
Q̃ (2.30)

and we can use the LLL form factor without loss of generality:

F0(q) = ⟨M | ˆ̃ρq|N⟩ = ⟨0| ˆ̃ρq|0⟩ = e−
1
2
Q̃ (2.31)

where we have defined:

q̃ =
1√
2
(qx − iqy); Q̃ ≡ |q̃|2 = |q|2

2
(2.32)

For a single δ-potential at (x0, 0), the unitary Fourier transform with angular fre-

quency in polar coordinates is given by the translation of Ṽ0(rq, θq):

Vq = Ṽx0(rq, θq) = eix0 · qx = eix0

√
2Q̃ cos(θq) (2.33)
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Then the matrix elements can be written as:

Hx0
mn =

∫
d2q⟨m|ρ̂q|n⟩F0(q) ·Vq

= π

√
m!

n!
·
∫ ∞

0
dQ̃ · in−mJn−m

(
x0

√
2Q̃

)
·
(
i ·
√
Q̃

)n−m

L(n−m)
m

(
Q̃
)
e−Q̃

(2.34)

where Jα(x) is the Bessel function of the first kind as introduced in Appendix.E,

which is related to the Laguerre polynomials as:

Jn−m

(
x0

√
2Q̃

)
=

x0
√
Q̃

√
2

n−m

·
e−

x20
2

Γ(n−m+ 1)
·

∞∑
k=0

L
(n−m)
k

(
Q̃
)

(
k + n−m

k

)
(

x2
0

2

)k
k!

(2.35)

substituting which into Eq.(2.34) gives:

Hx0
n≥m =

(−1)n−m ·π
√
2
m+n ·

√
m! ·n!

·xm+n
0 e−

x20
2 (2.36)

One can easily see the symmetry between x- and y-direction so for the δ-potential

at (x0, y0), the matrix elements of the Hamiltonian are given by:

Hmn(R) =
π√
m! ·n!

·
(
R√
2

)m+n

e−
R2

2 ei(n−m) · θR (2.37)

where R ≡ R · eiθR = x0 + i · y0.

In fact, the eigenstates and the eigenvalues of this Hamiltonian can be rigorously

solved. However, Vq can be any function (commonly-used ones including ∇2δ(2)(r),

cylindrical functions, Gaussian functions, etc.) so the corresponding Hamiltonian

can be very complicated. Here we would like to mention a possible solution given

by the δ-potential. By defining the differential operator:

Ĝ−1
mn ≡

∫
d2q⟨m|ρ̂q|n⟩F0(q) (2.38)

one can see that what we have derived above gives the Green’s function Hmn(R)

of this operator:

ĜmnHmn(R) = δ(2)(R) (2.39)
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Figure 2.1: Haldane pseudopotential V 2bdy
1 . This pseudopotential pun-

ishes any pair of electrons with the relative angular momentum 1 with the energy
cost c1.

Thus in principle, one can use this solution to derive the matrix elements of any

potential, the exact process of which will not be shown here.

2.4 Model Hamiltonians and model wave func-

tions

Assuming the translational invariance, a generic two-body interaction in the mo-

mentum space can be written as:

Ĥ2bdy =

∫
d2q

(2π)2
Vqρ̂qρ̂−q =

∑
i<j

∫
d2q

(2π)2
Vqe

iqa(r̂ai −r̂aj ) (2.40)

Thus one only needs to find the Fourier transform of the real-space potential. For

the Coulomb interaction potential, Vq ∼ 1/q. However, in practice, a second-

quantized form is more effective because the exact forms of wave functions are

extremely sensitive to the geometry and boundary conditions of the system. Nu-

merical calculations normally require a second-quantized basis. Furthermore, the

intrinsic physics of FQH phases are relevant to the electrons within a single LL,

so it is reasonable to project everything to this specific LL. Note that usually,



32 2.4. Model Hamiltonians and model wave functions

this requires a high-field limit, which will restrict all the electrons to the lowest

LL. But the mathematical procedure of mapping the Hilbert space to any single

LL is still well-defined. This projection can significantly decrease the size of the

Hilbert space, but to keep all the dynamical information, the infinite dimension of

the Hilbert space will transform into the infinite number of effective many-body

interactions, i.e.

Ĥ
(
â†, â, b̂†, b̂

)
=⇒ Ĥeff

(
b̂†, b̂

)
Infinitely large Hilbert space =⇒ Single LL

Coulomb interaction =⇒ Effective many-body interactions

Once a gauge is chosen with the corresponding boundary conditions, one can de-

termine the single-particle orbitals and construct the second-quantized basis. In

the following part, we will assume rotational invariance for the system and focus

on the LLL to show how to deal with the two-body model Hamiltonians. Then

we will use three-body interactions as an example to introduce how the effective

many-body interactions arise from LL projection [203].

2.4.1 Two-body case

With rotational invariance, we can second-quantize the density operators as:

ρ̂q =
∑

n1n2,m1m2

〈
n1,m1

∣∣eiqar̂a∣∣n2,m2

〉
ĉ†n1m1

ĉn2m2 (2.41)

where ni denotes the LL indices, and mi is the angular momentum quantum num-

ber. Here we shall introduce a formula that will be very commonly used in our

discussions: Given two quantum numbers A ⩾ B, and the corresponding quantum

states are denoted as |A⟩ and |B⟩. The matrix element of the corresponding ladder

operators that fulfill
[
â, â†

]
= 1 is given by

PAB(k) ≡
〈
A
∣∣∣e i√

2
k · â† · e

i√
2
k∗ · â

∣∣∣B〉 =

√
A!

B!
·
(

i√
2
k

)A−B

·L(A−B)
B

(
|k|2

2

)
(2.42)
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where L
(α)
n (x) denotes the generalized Laguerre polynomials, defined by:

L(α)
n (x) =

n∑
i=0

(−1)i ·

(
n+ α

n− i

)
·
xi

i!
(2.43)

In fact, this result has been used in the former case study of calculating the matrix

element of a δ-potential. Note that normal ordering has been assumed here. In the

lowest LL, n1 = n2 = 0, only the guiding center degrees of freedom are relevant.

The corresponding matrix element can be written as:

〈
0,m1

∣∣eiqar̂a∣∣ 0,m2

〉
=
〈
0
∣∣∣eiqa ˆ̃Ra

∣∣∣ 0〉 ·
〈
m1

∣∣∣eiqa ˆ̄Ra
∣∣∣m2

〉
= F0(q) ·

〈
m1

∣∣∣eiqa ˆ̄Ra
∣∣∣m2

〉 (2.44)

where we have defined the form factor Fn(q) ≡
〈
n
∣∣∣eiqa ˆ̃Ra

∣∣∣n〉, given by a Laguerre-

Gaussian function of q in an isotropic system as shown in Eq.(2.42). Thus the

density operators projected to the LLL are given by:

ρ̂LLLq = F0(q)
∑
m1m2

〈
m1

∣∣∣eiqa ˆ̄Ra
∣∣∣m2

〉
ĉ†0mĉ0n = F0(q) · ˆ̄ρq (2.45)

so a generic two-body interaction in the LLL can be written as:

Ĥ2bdy =

∫
d2q

(2π)2
V 0
q
ˆ̄ρq ˆ̄ρ−q =

∑
i<j

∫
d2q

(2π)2
V 0
q e

iqa
(
ˆ̄Ra
i −

ˆ̄Ra
j

)
(2.46)

where we have absorbed the form factor into the potential V 0
q . We can further

simplify this Hamiltonian by noticing that its only degree of freedom is the relative

guiding center coordinate. Thus by defining the center of mass and the relative

displacement of two guiding center coordinates:

R̂a
i,j =

1√
2

(
ˆ̄Ra
i − ˆ̄Ra

j

)
, R̂a

ij =
1√
2

(
ˆ̄Ra
i +

ˆ̄Ra
j

)
(2.47)

with the corresponding quantum number M and m, where the symmetric gauge

has been used (the coefficients will change if a different gauge is adopted), we can

rewrite the Hamiltonian as:

Ĥ2bdy =
∑

M1,M2,m1,m2

∫
d2q

(2π)2
V 0
q

〈
M1,m1

∣∣∣eiqaR̂a
i,j

∣∣∣M2,m2

〉
ĉ†M1,m1

ĉM2,m2 (2.48)
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and define the ladder operators as:
B̂ij =

1√
2

(
b̂i + b̂j

)
b̂ij =

1√
2

(
b̂i − b̂j

) (2.49)

So the eigenstates can be expressed as:

|M,m⟩ = 1√
M ! ·m!

(
B†

ij

)M (
b̂†ij

)m
|vac⟩ (2.50)

Thus the matrix element in the two-body Hamiltonian can be written as:

〈
M1,m1

∣∣∣eiqaR̂a
i,j

∣∣∣M2,m2

〉
= δM1,M2

√
m1!

m2!

(
i√
2
q

)m1−m2

L(m1−m2)
m2

(
q2

2

)
e−

1
2
q2

(2.51)

In a rotationally invariant system it will degenerate to δM1,M2δm1,m2Lm1 (q
2) e−

1
2
q2

because the angular momenta are conserved. In this case, considering the Laguerre-

Gaussian functions make up a complete and orthogonal basis in the L2[0,∞) space

[268], we can expand the potential V 0
q in the same basis as:

V 0
q = cmV 2bdy

m (2.52)

where Einstein’s summation has been adopted and we define V 2bdy
m ≡ Lm (q2) e−

1
2
q2 ,

so the coefficients cm is given by:

cm =

∫
d2qV 0

q Lm

(
q2
)
e−

1
2
q2 (2.53)

which shows the physical significance of cm as the energy cost of two particles with

relative angular momentum m as illustrated in Fig.2.1. V 2bdy
m acts as projecting

the states to the relative angular momentum m and it is also named as Haldane

pseudopotentials [20].

Note that everything here can be generalized to higher LLs, different geometry, or

topological manifolds, where a different form factor will be adopted, and the domain

of angular momentum could be different. More importantly, these pseudopotentials

bring enormous freedom for us to construct meaningful model Hamiltonians to

study the FQH phases and define subspaces in the full Hilbert space (named as

conformal Hilbert spaces as introduced in Chap.3). From this point of view, the
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Figure 2.2: LL projection. To preserve the information from the higher LL,
after the LL projection, effective many-body interactions have to be introduced.

Coulomb interaction can be regarded as nothing but a model Hamiltonian finely

tuned by nature, whose coefficients are decreasing with m significantly so that

we can numerically simulate the behavior of the Coulomb interaction with several

leading pseudopotentials.

2.4.2 Three-body case

It is not hard to see how the two-body pseudopotentials can be appropriately

generalized to many-body cases. But first, we need to understand why this is a

meaningful generalization in physics. In other words, why does LL mixing induce

effective many-body interactions in our Hamiltonian?

We can use the perturbation method to deal with the interactions. Thus the

important quantity is the energy scale ∆ = Ek

Eint
, which seemingly can always be

fulfilled when the magnetic field is strong enough. However, in realistic materials,

this could not be the case. A classical explanation is that when the magnetic field

is stronger, the radii of the electron orbitals become smaller, so their decreasing

distance will enhance the interactions between them. This process is proportional

to the magnetic field as well. For example, in gallium arsenide (GaAs), ∆GaAs ∼
B, so as long as the magnetic field is large enough, the perturbation method is

reasonable to use. In comparison, for free-standing graphene ∆graphene =
e2

εℏvF
∼ 2.2

thus irrelevant to the magnetic field, which is definitely too small to treat the

interaction as perturbations [269, 270]. Note that the value of ∆graphene can also
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be influenced by the thickness (layer number) of the material, substrate variety,

and suspension, so it usually takes some numerical simulations to get the results

for graphene.

As a result, here we assume that ∆ is sufficiently large for our theoretical discussion,

which cannot be pushed to ∞, though, because in that case, there will be no LL

mixing at all. Considering that we are trying to project everything to a low-energy

regime in the spectrum, the Schrieffer-Wolff (SW) transformation can serve the job

(refer to Appendix.C for more details), which is a type of second-order perturbation

operator method that acts as a rotation in the Hilbert space [203, 271, 272]. In

practice, we are looking for an anti-Hermitian operator expanded as:

Ŝ =
∞∑
n=1

Ŝn, Ŝn ∼ O
(
∆−n

)
(2.54)

which gives the effective Hamiltonian in the low-energy regime (in our case, the

lowest LL) as:

Ĥeff = eŜĤe−Ŝ = Ĥ + [Ŝ, Ĥ] +
1

2
[Ŝ, [Ŝ, Ĥ]] + · · · (2.55)

After doing the perturbation order by order, one can see that effective many-body

interactions arise. In other words, these interactions emerge to compensate for the

loss of information after LL projection as shown in Fig.2.2. Based on the idea in the

last section, now that we know how to derive the effective Hamiltonian from a given

potential, it is also possible to construct three-body model Hamiltonians with exact

physical significance. Here by assuming rotational invariance, we can reorganize

the guiding center coordinates into commutative Jacobi coordinates (introduced in

Appendix.D) to decrease degrees of freedom:

R̂a
ij =

1√
2

(
ˆ̄Ra
i − ˆ̄Ra

j

)
R̂a

ij,k =
1√
6

(
ˆ̄Ra
i +

ˆ̄Ra
j − 2 ˆ̄Ra

k

)
R̂a

ijk =
1√
3

(
ˆ̄Ra
i +

ˆ̄Ra
j +

ˆ̄Ra
k

) (2.56)
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Without loss of generality, we will set {i, j, k} = {1, 2, 3} in the following discus-

sions. Thus the ladder operators can be defined as: b̂†1 =
1√
2

(
R̂x

12 + iR̂y
12

)
b̂1 =

1√
2

(
R̂x

12 − iR̂y
12

) ,

 b̂†2 =
1√
2

(
R̂x

12,3 + iR̂y
12,3

)
b̂2 =

1√
2

(
R̂x

12,3 − iR̂y
12,3

) (2.57)

As usual, we have
[
b1, b

†
1

]
=
[
b2, b

†
2

]
= 1. The corresponding quantum numbers

are denoted by m1 and m2, with the differences

∆m1 = m′
1 −m1, ∆m2 = m′

2 −m2 (2.58)

where the quantum number m1 denotes the relative momentum between the first

and the second electron, and m2 represents the relative momentum between the

center-of-mass of the first two electrons and the third one. Note that m1 can only

be odd due to the fermionic statistics. If there is a rotational invariance, we will

always have ∆m1 = −∆m2.

It is convenient to take a non-isometric basis transformation of the momenta to

write down the Hamiltonian in a more compact way:

q̃1 =
1√
2
(q1 − q2) , q̃2 =

√
3

2
(q1 + q2) (2.59)

Thus:

q1 =
1√
2
q̃1 +

1√
6
q̃2, q2 = − 1√

2
q̃1 +

1√
6
q̃2 (2.60)

To turn the integral over q1 and q2 to the one over q̃1 and q̃2, we can work out

the Jacobian as J = 1
3
, which transforms the three-body translationally invariant

Hamiltonian into:

Ĥ3bdy =

∫
d2q̃1d

2q̃2Vq1q2e
iq̃1aR̂a

12eiq̃2aR̂
a
12,3 (2.61)

where we have absorbed the constant coefficients and the terms relevant to the cen-

ter of mass into Vq1q2 . After mapping everything to C, the regularized momentum

can be defined as:

q =
1√
2
|q̃1| · eiθ̃1 , q′ =

1√
2
|q̃2| · eiθ̃2 (2.62)
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For a three-electron rotationally invariant state |ψ3⟩ with the conserved center of

mass angular momentum in the magnetic field can be expanded with the complete

basis |m1,m2⟩:
|ψ3⟩ =

∑
m1,m2

αm1,m2|m1,m2⟩ (2.63)

where the expansion coefficients αm1,m2 can be explicitly derived. Thus we can find

the matrix element of the three-body Hamiltonian on this basis:

〈
m1,m2

∣∣∣eiq̃1aR̂a
12eiq̃2aR̂

a
12,3

∣∣∣m′
1,m

′
2

〉
=

√
m1! ·m2!

m′
1! ·m′

2!
(iq)∆m1 (iq′)

∆m2

·L(∆m1)
m1

(
|q|2
)
L(∆m2)
m2

(
|q′|2

)
e−

1
2(|q|2+|q′|2)

(2.64)

This inspires us to define the three-body model Hamiltonians by expanding Vq1q2

in the complete and orthogonal generalized Laguerre-Gaussian basis:

Vq1q2 = cm1m2∆m1∆m2 ·Vm1m2∆m1∆m2 (2.65)

where we have defined Vm1m2∆m1∆m2 ≡ L
(∆m1)
m1 (|q|2)L(∆m2)

m2

(
|q′|2

)
e−

1
2(|q|2+|q′|2),

and normally we only use the components with ∆m1 = ∆m1 = 0. In this case, we

can write down the model Hamiltonian as follows:

Vq1q2 = cm1m2 ·Vm1m2 = cm1m2L(0)
m1

(
|q|2
)
L(0)
m2

(
|q′|2

)
e−

1
2(|q|2+|q′|2) (2.66)

As for a given potential Ṽ , the expansion coefficients are given by the associated

inner product defined in the Segal–Bargmann space [273]:

cm1m2 =

∫
dqdq′Ṽ ·L(0)

m1

(
|q|2
)
L(0)
m2

(
|q′|2

)
e−

1
2(|q|2+|q′|2) (2.67)

In practice, it is also reasonable to label the three-body pseudopotentials with total

relative angular momentum defined by α = m1 +m2, which gives:

Vq1q2 = cαV 3bdy
α (2.68)

One can freely choose the coefficients cα to construct different model Hamiltonians.

Generically speaking, we can mathematically generalize this to the interaction

among an arbitrary number of particles. However, it is not very significant in
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physics because (i) the many-body part in the Coulomb interaction expansion be-

comes less and less critical, and (ii) the many-body model Hamiltonians are hard

to be realized in experiments. Therefore, in the following parts of this thesis, we

will focus on the two-body and the three-body model Hamiltonians.



Chapter 3

Conformal Hilbert Space and

Composite Fermionization

This chapter will introduce the relationship between the conformal field theory

(CFT) and FQH phases. First, we will start with a very brief recap of CFT without

proofs, especially those relevant to FQHE, and then discuss why two-dimensional

CFT can be related to FQH phases, which also gives rise to the concept of conformal

Hilbert space (CHS). Afterward, we will rigorously define the isomorphism between

different CHSs with analytic number theory, leading to a rigorous interpretation of

composite fermionization from unitary mappings between isomorphic CHSs.

3.1 CFT: the theoretical minimum

Instead of providing a thorough introduction to the concepts in CFT (which, in

fact, can be written as a thesis itself), below, we will only mention the jargon

we need for our later discussions on the application of CFT in FQHE. Further

explanations can be found in Refs.[25, 274–276], which cover far more than the

contents we discuss here.

CFT is a species of field theories with conformal symmetry, which means that they

are invariant under conformal transformation given by:

g′µν (x
′) = Ω(x)gµν(x) (3.1)

40
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where Ω(x) is the scale factor. Thus the metric gµν remains invariant up to a scale,

which indicates that the angles between any two vectors on the (semi-Riemannian)

manifold will not be changed by conformal transformations. Historically, conformal

symmetry was found to exist in two-dimensional (2D) critical phenomena, such as

the 2D Ising model, which can be solved by 2D CFT [277]. This is not surprising,

though, because of the scale invariance at the critical point. One of the most

exciting applications of CFT is in the string theory, where the Polyakov action

that describes the time evolution of strings is found to be conformally invariant

so that it can be studied using 2D CFT [278]. Furthermore, the duality between

a gravitational theory and a conformal field theory was discovered by Maldacena,

named AdS/CFT correspondence [279], which can also be generalized to condensed

matter systems [280, 281].

The corresponding Lie group of global conformal transformations is naturally named

a conformal group, which contains the Poincaré group as its proper subgroup (with

Ω(x) = 1). The associated Lie algebra of the generators is given by:

[Jmn, Jpq] = i (ηmqJnp + ηnpJmq − ηmpJnq − ηnqJmp) (3.2)

where ηmn denotes the metric. We use Lµν , Pµ, Kµ andD to denote the generator of

rotation, translation, special conformal transformation, and dilation respectively:

Jµ,ν ≡ Lµν , J−1,µ ≡ 1

2
(Pµ −Kµ) , J0,µ ≡ 1

2
(Pµ +Kµ) , J−1,0 ≡ D (3.3)

Things get intriguing in the 2D case because the algebra of (local) conformal trans-

formations turns out to be infinite-dimensional [274]. Thus many correlation func-

tions become solvable because of the infinite restrictions one can impose. More-

over, from mathematics, we know that these conformal transformations in R2 can

be described by locally invertible holomorphic or antiholomorphic functions in C.
Thus it is helpful to transform everything into complex coordinates by defining the

following:

z ≡ x0 + ix1, ∂z ≡
1

2
(∂0 − i∂1)

z̄ ≡ x0 − ix1, ∂z̄ ≡
1

2
(∂0 + i∂1)

(3.4)

where ∂i = ∂/∂xi. We can write down the infinitesimal conformal generators as:

ℓn = −zn+1∂z, ℓ̄n = −z̄n+1∂z̄, (3.5)
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where n ∈ Z and the generators with |n| ≤ 1 correspond to global conformal

transformations (they are exactly the 2D version of Eq.(3.3)), the group of which

is thus only finite-dimensional. In comparison, the local conformal transformations

do not form a group but an infinite-dimensional Lie algebra. The algebra of all the

infinitesimal generators in Eq.(3.5) is called the Witt algebra, given by:

[ℓn, ℓm] = (n−m)ℓn+m,
[
ℓ̄n, ℓ̄m

]
= (n−m)ℓ̄n+m,

[
ℓn, ℓ̄m

]
= 0 (3.6)

which is equivalent to the diffeomorphism group on S1. But in quantum field

theory, we normally need a projective representation. By adding central extension

terms to this infinite-dimensional algebra, we can get such a representation of the

conformal group, called the Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12

(
m3 −m

)
δm+n,0[

L̄m, L̄n

]
= (m− n)L̄m+n +

c

12

(
m3 −m

)
δm+n,0[

Lm, L̄n

]
= 0

(3.7)

where the central charge c ∈ C. From the physical point of view, the Virasoro

algebra is the quantized version of the Witt algebra, because the central extension

term comes from the ambiguity of operator ordering, although we only need the

Jacobi identity to derive this expression without invoking any physics. Under

global conformal transformations z → w and z̄ → w̄, a generic field could have a

quite complicated form, so an important type of field ϕ is defined as the one with

a specific simple behavior:

ϕ′(w, w̄) =

(
dw

dz

)−h(
dw̄

dz̄

)−h̄

ϕ(z, z̄) (3.8)

and these fields are called quasi-primary fields. Here h and h̄ are named as confor-

mal dimensions, given by the linear combination of the scaling dimension ∆ and

the spin s:

h =
1

2
(∆ + s), h̄ =

1

2
(∆− s) (3.9)

which together with the central charge can determine a unique unitary highest-

weight representation of the Virasoro algebra W (c, h) or W̄ (c, h̄). All the relevant

fields in a CFT can be expressed as the linear combination of the quasi-primary

fields and their derivatives. Moreover, within the quasi-primary fields, it is possible
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to find some of them that transform as in Eq.(3.8) under any conformal transfor-

mations, and these fields are called primary fields. These fields are related to the

highest weight representations of the Virasoro algebra, where the highest weight

states |h, h̄⟩ are strictly annihilated by the lowering operators Ln≥1:

L0|h, h̄⟩ = h|h, h̄⟩, L̄0|h, h̄⟩ = h̄|h, h̄⟩; ∀n ≥ 1, Ln|h, h̄⟩ = 0 (3.10)

and these highest-weight states are exactly created by primary fields. Here the

generators with n ≤ −1 are called lowering operators, and one can apply them to

|h, h̄⟩ to generate a series of descendent states L−n1 · · ·L−nk
|h, h̄⟩. Each primary

field together with its descendent states called a conformal family, which is ap-

parently closed under conformal transformations as an irreducible representation

(irrep) of the Virasoro algebra, and as we shall see in the following section, this

important property gives rise to the concept of CHSs.

The conformal families can also lead to the so-called state-operator correspondence

in radial quantization, where the N -point correlators of descendent states can be

written down with the N -point correlators of the corresponding primary states,

which can be expanded by the conformal blocks given by solving conformal Ward

identities, and the critical behaviors of which are depicted by the operator product

expansions (OPE) encoding the fusion rules of the fields.

3.2 CFT approach to FQHE

The earliest application of CFT in FQHE was carried out by Moore and Read

in 1991 [93]. Back then they observed the formal similarities between the model

wave functions of FQH states and some correlators (conformal blocks) in 2D CFT.

More importantly, based on this observation they predicted a new FQH phase with

non-Abelian quasiparticles, which is named the Moore-Read (MR or Pfaffian) state

nowadays. The MR state is the candidate of the FQH state at the filling factor with

an even denominator. This implies that the physics in this phase should be totally

different from the Laughlin states. In this section, we would like to introduce the

procedure to write down the CFT correlators for FQH states and their applications

to both the bulk and the edge of FQH droplets. In particular, we will discuss the

seeming paradox, i.e. why CFT can be used in these incompressible states with a
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length scale set by ℓB even if the conformal symmetry requires a scale invariance

(given by the dilation generator D as defined in Eq.(3.3)), and whether this CFT

description is always valid.

Let us briefly review the equivalence between certain FQH model wave functions

and CFT correlators: We can rewrite a wave function, which is a holomorphic poly-

nomial of the electron coordinates zi, to a conformal block given by the correlation

of fields (or vertex operators) F (zi):

Ψ({zi})FQH ∝

〈∏
i

F (zi)

〉
CFT

(3.11)

where F (zi) is the product of simple currents [25]) and bosonic fields. Apparently,

there is a one-to-one correspondence between the electrons and the fields. This can

be easily generalized to the states with quasihole excitations by defining another

field H for the quasiholes at hi (the OPE of which should obey F (z)H(h) ∼
(z − h)lH ′, l ≥ 0 to ensure that the braiding between quasiholes and electrons is

trivial):

Ψ ({hi}, {zi})FQH−qh ∝

〈∏
i

H (hi)
∏
j

F (zj)

〉
CFT

(3.12)

The CFT corresponding to different FQH phases can be quite different with respect

to their unitarity and rationality, but there is always a U(1) chiral subalgebra

corresponding to the electric charge. We can take the simplest case, the Laughlin

state at the filling factor ν = 1/m as our first example:

Ψm ({zi}) =
∏

1≤i<j≤Ne

(zi − zj)
m exp

(
−
∑
i

|zi|2

4

)

=

〈 Ne∏
i=1

ei
√
mφ(zi)︸ ︷︷ ︸
F (zi)

 exp

(
−
∫
d2z′

√
mρ0φ (z′)

)〉 (3.13)

where ρ0 = 1/(2πm) and the normal ordering notations have been omitted. As

we can see, apart from the vertex operators with U(1) charge m, we also need a

background charge operator, which reminds us of the plasma analogy [19, 282],

and we can understand it from two aspects: (i) Technically speaking, if we only

include the vertex operators in the correlator, the final result will just vanish. (ii)

Physically speaking, the correlator we consider are with respect to the vacuum,

which leads to an important condition called charge neutrality, so the background
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charge operators are here to balance the electric charge of the electrons to fulfill

this condition [283].

Then by properly defining the quasihole operator, we can write down the corre-

sponding wave function for quasihole states. For clarity, let us add a single quasi-

hole to the Laughlin state and write down the wave function with the equivalent

CFT correlator by:

Ψqh
m (h; {zi}) =

Ne∏
j=1

(zi − h)Ψm ({zi})

=

〈
exp

(
i√
m
φ (z0)

)
︸ ︷︷ ︸

H(h)

(
Ne∏
i=1

ei
√
mφ(zi)

)
exp

(
−
∫
d2z′

√
mρ0φ

(
z′
))〉

(3.14)

Note that the ratio between the U(1) charge of the electrons and the quasiholes ism,

which indicates that the quasihole excitations have fractional charge (U(1) charges

are proportional to the electric charges), and more H operators can be inserted

to the correlator for the FQH states with more quasiholes. This formalism can

be generalized to multi-component states and non-abelian states, but we will not

explicitly show their wave functions here [284]. Furthermore, the Z2 simple charge

of CFT operators is essential for the single-valuedness of FQH wave functions,

and the monodromy charge of the operators is important for braiding or modular

property [285–287].

Another important insight from CFT is the understanding of the edge states and

especially the relationship between the bulk and the edge of FQH droplets. Obvi-

ously, the edge excitations should be described by a 1 + 1D theory, and Wen first

proposed that they are essentially chiral Luttinger liquids [83]. Later on, people

also found that it is naturally possible to use different 2D CFTs (with perturba-

tions) to describe the edge states of different FQH states, and they should share

the same counting patterns in the Lz sectors, which also matters for defining CHSs

as introduced in the next section [284]. Meanwhile, inspired by the famous holo-

graphic principle in high energy physics, the bulk-edge correspondence in condensed

matter systems (especially the topological phases) was also found, which allows us

to study the bulk via the same CFT model at the edge. More importantly, some

relevant quantities can be calculated even in a system without an edge, such as the

entanglement entropy [214–218], and the entanglement spectrum [175, 221], which
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only requires that the system (thus the Hilbert space and the eigenstates |Ψ⟩) is

separated into two parts A and B virtually in the real space or in the guiding center

orbitals:

|Ψ⟩ =
∑
i

e−ξi/2
∣∣ψi

A

〉
⊗
∣∣ψi

B

〉
(3.15)

where the entanglement spectrum consists of the values of ξi, and they can capture

exactly the same properties of the corresponding CFT as well. All of these show

that the CFT description of the FQH states is not just a coincidence but should

be regarded as a valid description of the physics in these states.

Now if we look back, the formal similarities between the FQH wave functions and

conformal blocks in CFT seem too superficial to explain the reason why CFT can

apply so well to the FQH phases. The first point we should make is that, generically

speaking, an FQH phase is a gapless system (especially in experiments), because

of the existence of edge excitations. But to better understand this, we need to

mention the relation between CFT and the low-energy effective field theory that

describes the FQH states, which has been shown to be a Chern-Simons (CS) theory

[77] because the action should be a local one with gauge invariance in bulk (and

preferably rotational invariance), but without parity and time reversal symmetry,

given by:

SCS[A] =
k

4π

∫
d3xϵµνρAµ∂νAρ (Laughlin state at ν = 1/k) (3.16)

where k is the level of this action (which is directly related to the filling factor in

this context) and A is another gauge field in addition to the one that describes the

external magnetic field, which should not change the existing FQH phase of the

system [77]. Intuitively speaking, we are discussing the perturbation from some

FQH phase or “plateau” by using the CS theory instead of reconstructing the whole

system with some quantum field.

The topological feature of this action can be easily found in the lack of a metric

tensor because there is only a Levi-Civita pseudotensor ϵµνρ balancing the indices,

which means that it is not sensitive to the geometric properties of the space-time

manifold. As a result, the Hamiltonian (or the stress-energy tensor) vanishes, so

there are no dynamical degrees of freedom in such a system (but in fact, there

can exist dynamics of emergent gauge fields). Although the CS theory has trivial
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dynamics, it can successfully predict the robustness of plateaus in the Hall resistiv-

ity and describe the anyons with fractional statistics [77]. Furthermore, the gauge

invariance will be destroyed at the edge, leading to unconserved currents, the offset

of which exactly corresponds to the gapless chiral edge currents in FQH phases.

The incompressibility of FQH phases also plays a pivotal role in why CS theory

can describe them in the low-energy regime (which we usually care about), which

is equivalent to setting the energy scale to either zero or infinity in the system. In

this case, only the topological degrees of freedom can influence the system.

Now we have known that CS theory provides the low-energy description of FQH

phases. The general relation between CFT and CS theory was noticed by Witten

when studying the 2+1D Yang-Mills theory (whose action is of the Chern-Simons

type) [92]. To canonically quantize the Chern-Simons theory on Σ × R1 and get

the corresponding Hilbert space H, where the (space) surface Σ is oriented and

smooth and R1 represents the time dimension, one can add a complex structure C
on Σ to make it Riemannian. Meanwhile the outcome HΣ should not be influenced

by the specifically chosen C but only by Σ, which means that HΣ is a flat vector

bundle on the moduli space of Σ. Such an algebraic structure was found in CFT

when Segal was looking for the space of conformal blocks from the Ward identities

[288]. Thus Witten was acutely aware of the equivalence between the Hilbert space

HCS of a quantized CS theory and the space of conformal blocks (Moore and Read

explained why using CFT to study FQH is reasonable based on this point [93]). So

the full relation between the FQH phase, CS theory, and CFT can be illustrated

as follows:

FQH phase

(Particles)

CS action

(Sources)

Vector space of

conformal blocks

(Fields)

Coarse−graining

Low−energy

Quantized

HCS

This relation reveals when we can properly establish a mapping between FQH

states and CFTs. In the next section, we will introduce how to explicitly make

connections between them.

Besides giving the wave functions of FQH states by using CFT, Moore and Read

also proposed several conjectures about the relationship between FQHE and CFT,

which can serve as a nice wrap-up for the content in this section [284]:
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“Representative wave functions for quantum Hall ground states, as well as their

quasihole excitations, can be expressed in terms of conformal blocks of primary

fields in (rational, unitary) CFTs. The holonomies, or statistical braiding ma-

trices, equal the monodromies of these blocks. Furthermore, the same CFTs

yield a minimal dynamical theory for the edge of the quantum Hall liquid.”

3.3 Conformal Hilbert spaces

In the last section, we have introduced the nontrivial relationship between FQH

states and 2D CFT correlators. Now, let us see how to construct a Virasoro algebra

in the Hilbert space of FQH states.

To work in the low-energy regime, a natural way is to set up a Hamiltonian and

get the corresponding null space. Based on Chap.2, we know that model Hamilto-

nians can be defined for some (but not all) FQH states, so here, we can use them

to construct the algebra. These null spaces consist of the ground state(s) and all

the quasihole states, so they can also be regarded as quasihole manifolds with the

metric induced by the inner product (the case of non-unitary CFT is not consid-

ered here for now). Furthermore, if rotational invariance is present, we can use

angular momentum to index single particle orbitals, and the null spaces can be au-

tomatically separated into different Lz sectors with well-defined ladder operators.

Given the electron number Ne and the orbital number No, we can construct the

representations (of the compact su(2) algebra) from the highest weight state. A

similar routine can be found in CFT. For example, a Verma module can be derived

in the same manner. By using the raising operators on the highest weight state

created by the primary field in every possible way, one can generate all the de-

scendent states and thus the whole representation after truncating the null states.

The proper way to construct the Virasoro-like generators in the null space H of

rotationally invariant model Hamiltonians has been proposed [139]:

L̂−n =
∞∑
k=0

g(k + n, k) · ĉ†k+nĉk, L̂n =
∞∑
k=0

g(k, k + n) · ĉ†kĉk+n (3.17)
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where the fermionic operators fulfills
{
ci, c

†
j

}
= δij, {ci, cj} =

{
c†i , c

†
j

}
= 0 and

g(a, b) is the normalization factor influenced by the geometry, which leads to dif-

ferent orbital indices. The algebra of these generators is given by:[
L̂m, L̂−n

]
= (n−m)L̂m+n + Ĉm,n (3.18)

where the central charge operator is:

Ĉm,n =


∑m−1

k=0 g(k, k +∆) · (k −m) · ĉ†kĉk+∆, n ⩾ m∑n−1
k=0 g(k +∆, k) · (k − n) · c†k+∆ĉk, n ⩽ m

(3.19)

However, the requirements for the primary state ϕh, in this case, have to be adjusted

a little bit because generically L̂nϕh does not vanish when n > 0, which will instead

give an excited state outside the null space H̄. As long as we can make sure that

(i) all the descendant states are within H, and (ii) acting Ĉm,n or all the lowering

operators on the highest weight state will generate a state in H̄, the Virasoro

algebra will be strictly obeyed within H, which means that we do have a conformal

symmetry in these sub-Hilbert spaces defined by the model Hamiltonians. Hence

we can define these null spaces (or quasihole manifolds) as the conformal Hilbert

spaces (CHSs).

In principle, each model Hamiltonian defines a CHS, which can provide valuable

insights into the structure of the full Hilbert space and the relations between dif-

ferent FQH states for us. In the following parts, we shall see that some of the

CHSs can be very similar to each other even if they are defined by different model

Hamiltonians, which in turn implies that there could exist a mapping between the

states within them, so one can discuss almost the same physics in totally different

contexts.

3.4 Isomorphism of conformal Hilbert spaces

From the last section, we know that in the full Hilbert space of FQH phases (which

could be a single LL), we can find many CHSs defined by different model Hamilto-

nians. We want to figure out whether some nontrivial relations exist between these

spaces, which, in this section, will be shown to be true. We will specifically focus
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on describing the similarities among these spaces by defining the isomorphism be-

tween different CHSs from the generating function of the Lz sector degeneracies.

This idea can be extended to the FQH phases with anyonic quasihole excitations

and even bosonic FQH phases. As the next section explains, the upshot can provide

a rigorous reinterpretation of the CF theory.

3.4.1 Partition

We will first review some relevant analytic number theory concepts and try to

balance intuition and rigor. Then the application of the essential conclusions to

analyzing the Lz sector degeneracy and the corresponding highest-weight (HW)

state degeneracy will be given in the following parts.

For any positive integer n, it is always possible to decompose it into several positive

integers. For example, 3 can be written as 3 = 1 + 2 = 1 + 1 + 1, so there are

3 different ways to decompose it. Each decomposition of the integer n is called

a partition of n, and the numbers inside a decomposition are called parts. Thus

for the former example, we have three partitions for the number 3: {3}, {1, 2},
and {1, 1, 1}. In the partition {1, 2}, 1 and 2 are both the parts. Normally the

partition number of 0 is defined to be one. Then we can give the rigorous definition

of partition and partition number as follows:

Definition 3.1 (Partition). A partition of n ∈ Z+ is a finite non-increasing se-

quence including n1 parts of 1, n2 parts of 2, n3 parts of 3, · · · , nk parts of k such

that
∑

k k ·nk = n, where ∀k, nk ∈ Z+.

Definition 3.2 (Partition number). The total number of different partitions of

a non-zero integer n is called a partition number, denoted by p(n) without any

restrictions, or p(n|R) with additional restrictions. Here R denotes the set of all

the restrictions to the partitions of k.

One of the core problems in the partition theory is to give the exact value of the

partition numbers of an arbitrary integer n, the formula of which has been provided

by a convergent infinite series [289, 290]. Nowadays, efficient algorithms have been

developed to calculate the partition numbers for a given integer. Moreover, the

visualized method can also be used for solving the partition numbers, such as

Durfee squares, Ferrers diagrams, and Young diagrams, which are especially useful
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k p(k) 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
0 1 1 0 0 0 0 0 0 0 0 0 0 0 · · ·
1 1 1 0 0 0 0 0 0 0 0 0 0 0 · · ·
2 2 1 1 0 0 0 0 0 0 0 0 0 0 · · ·
3 3 1 1 1 0 0 0 0 0 0 0 0 0 · · ·
4 5 1 2 1 1 0 0 0 0 0 0 0 0 · · ·
5 7 1 2 2 1 1 0 0 0 0 0 0 0 · · ·
6 11 1 3 3 2 1 1 0 0 0 0 0 0 · · ·
7 15 1 3 4 3 2 1 1 0 0 0 0 0 · · ·
8 22 1 4 5 5 3 2 1 1 0 0 0 0 · · ·
9 30 1 4 7 6 5 3 2 1 1 0 0 0 · · ·
10 42 1 5 8 9 7 5 3 2 1 1 0 0 · · ·
11 56 1 5 10 11 10 7 5 3 2 1 1 0 · · ·
12 77 1 6 12 15 13 11 7 5 3 2 1 1 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

Table 3.1: Integer partition numbers p(k) and p(k|i) (denoted by the
corresponding integers in the first row for simplicity). Here i means that there
are i parts in the partitions of integer k.

in combinatorics [291]. However, it is not hard to imagine that when the integer n

gets larger and larger, any method of calculating the partition number of n will be

more and more time-consuming and eventually fail to answer within a limited or

meaningful time. Moreover, even a simple restriction to the parts (for example, all

the parts are required to be different from each other, or there must be i parts in

each partition, as Table.3.1 shows) can bring enormous complexity to the derivation

of the exact formula for the partition numbers. In fact, studying the degeneracy of

the Lz sectors or the highest-weight states in the Hilbert space of an FQH system

does have lots of restrictions to the parts of partitions of an incredibly large number

(proportional to the number of electrons in the system). The story does not stop

here, though, because the main question we are asking is not how to calculate all

the partition numbers as explained in the following sections, the difficulty of which,

however, urges us to use a different idea from directly solving the partition numbers

to deal with the partitions.

The methods in analytic number theory can lend us a hand in this case. A stan-

dard way to study the partition number sequence is by formally constructing the

corresponding power series of a dummy variable q ∈ (0, 1) (more variables might

be needed with additional restrictions):
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Definition 3.3 (Generating function). The formal infinite series is defined as the

generating function for the sequence p(1|R), p(2|R), p(3|R), · · · , etc.

G(q|R) ≡
∑
k≥0

p(k|R) · qk (3.20)

where the set of restrictions is denoted by R. If the coefficient of each term (the

partition number) is not restricted to N, but some other algebraic structures, for

example, a polynomial ring, then we can get the generating function for its elements

as well. For example, the generating function of the Laguerre polynomials discussed

in Appendix.E can be written as:

GLaguerre(q) =
∞∑
n=0

L(0)
n (x) · qn =

1

1− q
· e−

qx
1−q (3.21)

If we look back into the history of physics, the application of partitions can even

be found in the era of Boltzmann, i.e. before the establishment of quantum me-

chanics, where the partition functions in statistical mechanics are exactly a direct

application of generating functions [48]. Furthermore, the generating functional

formalism (or path integrals) in quantum field theory is based on the same spirit

[292]. Unsurprisingly, this formalism also applies to the counting of conformal

families as the last section explains. Intuitively speaking, the generating function

offers a way to describe the distribution of elements in the system based on some

pre-defined weight (which could be given by energy, action, etc.) without losing any

information. Specifically, if R ̸= ∅, then G(q|R) is called restricted. We have the

following corollary:

Corollary 3.1. The relationship between G(q) and p(k) can be written as:

p(k) =
1

k!

∂kG(q)
∂qk

∣∣∣∣
q=0

≡ ∂kG(q)
k!

∣∣∣∣
q=0

(3.22)

However in practice, normally we prefer not to (even if in principle we can) ex-

tract an arbitrary partition number from the generating function, because of the

unavoidable higher-order derivatives. The precious advantage of the generating

function is that the number of partitions of n under some particular conditions

often equals the number of partitions of n under entirely different conditions, so



Chapter 3. CHS & Composite Fermionization 53

we can figure out how to write down closed-form expressions for the partition se-

ries with restrictions, such that we can compare two partition series {p(n|R1)} and

{p(n′|R2)} with different restrictions just by looking at their generating functions

instead of calculating all the partition numbers. In fact, by doing so we don’t

need to know about any one of the partition numbers at all, because all the in-

formation about the partitions has been encoded in the generating function. A

physicist-friendly example is that calculating any (thermodynamic) quantity can

be eventually related to the operations of the partition function.

3.4.2 Restricted generating functions

As we have explained, what we care about is properly writing down the generating

function with given restrictions R. So in this subsection, all the useful generating

functions that we need for discussing physics will be introduced or derived. Let us

start with some jargon in number theory for later use. The essence of using series

to denote the partitions is that we can literally simulate the binary operation of

“taking” or “leaving” by using the following expressions:

Definition 3.4 (q-Pochhammer symbol).

(a)n = (a; q)n = (1− a)(1− aq) · · ·
(
1− aqn−1

)
;

(a)∞ = (a; q)∞ = lim
n→∞

(a; q)n; (a)0 = 1
(3.23)

Here each term in the brackets is like a box that we can choose whether we want

to take the meaningful term inside (−aqi, i ∈ {0, 1, · · · , n − 1}) or not (1), and

the variable a serves the role of a counter, which can also be set to be q to make

the partition restriction-free. Thus one only needs to look at the coefficient of the

term am · qN when looking for the partition number of N with m parts. Another

important symbol is the generalization of the binomial coefficient:

Definition 3.5. (q-Gaussian polynomial)

[
n

m

]
q

=

(q)n(q)
−1
m (q)−1

n−m, 0 ⩽ m ⩽ n

0, otherwise
(3.24)
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which has many practical properties that can be used for our following derivations,

as shown in Ref.[289]. Then to reflect the restrictions to the parts on the generating

function, we have to manipulate the powers of the formal variables as seen in the

q-Pochhammer symbols. Hence let us consider a multiple Laurent series of the

formal variables λi: ∑
n1,n2,...,nm≥0

αn1,n2,··· ,nmλ
n1−n2
1 λn2−n3

2 · · ·λnm−1−nm

m−1 (3.25)

where α denotes the coefficients irrelevant to λi. The behavior of the powers can

be used to restrict the parts after defining a useful operator [293]:

Definition 3.6 (Regularization operator). The operator Ω̂λ is defined to act on

a multiple Laurent series of λi, annihilate all the terms with negative exponents,

and set any remaining coefficients to 1.

The regularization operator can help eliminate all the formal variables because of

the following lemma [293]:

Lemma 3.2 (Elimination of coefficients by the regularization operator).

Ω̂λ
λ−k

(1− λx)(1− y/λ)
=

xk

(1− x)(1− xy)
(3.26)

which can be easily generalized to the case with more than one formal variable, as

shown in the following section. Furthermore, to extract the partition number from

a partition function, we can formally define the following:

Definition 3.7. (Extraction operator) Define the operator which can extract the

coefficient from the series by:

Λ̂
(q)
j

∞∑
n=0

anq
n = aj (3.27)

Here the exact form of the operator Λ̂
(q)
j does not matter, and apparently, the

operator ∂k
k!

∣∣
q=0

acting on a generating function can be regarded as a well-defined

extraction operator. Now we are all set to give the restricted generating function

to be used in the following discussions:



Chapter 3. CHS & Composite Fermionization 55

Theorem 3.3 (Generic restricted partitions). For the number of partitions of

n:

(i) into exactly m parts;

(ii) each part (in descending order) differs from the next by at least k ≥ 0;

(iii) the smallest part ≥ L ≥ 0 ;

(iv) the largest part ≤ N ;

The generating function is given by:

G(q|L≥;N≤;m=; k) = q
km(m−1)

2
+Lm

[
N +m− k(m− 1)− L

m

]
q

(3.28)

where n,m, k, L,N ∈ N.

Proof. Let us start with some simple partitions without so many restrictions and

add the conditions step by step. Firstly consider the generating function of the

partition numbers of n into parts ≤ N with N ∈ Z+:

G(q|;N≤; ; ) =
∞∑
n=0

p(n|;N≤; ; )qn =
∞∑

n1=0

q1 ·n1

∞∑
n2=0

q2 ·n2 · · ·
∞∑

nN=0

qN ·nN =
1

(q)N

(3.29)

Then we can think about the generating function of the partition numbers of n

into ≤ m parts:

G(q|; ;m≤; )) =
∞∑
n=0

p(n|; ;m≤; )qn =
∑

n1≥n2≥···≥nm≥0

qn1+n2+···+nm (3.30)
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which, according to the definition of the regularization operator, is equivalent to:

G(q|; ;m≤; ))

=Ω̂λ

∑
n1,n2,...,nm≥0

qn1+n2+···+nmλn1−n2
1 λn2−n3

2 · · ·λnm−1−nm

m−1

=Ω̂λ

∞∑
n1=0

(qλ1)
n1

∞∑
n2=0

(qλ2/λ1)
n2 · · ·

∞∑
nm−1=0

(qλm−1/λm−2)
nm−1

∞∑
nm=0

(q/λm−1)
nm

=
1

(1− q) (1− q2) · · · (1− qm)
=

1

(q)m
= G(q|;m≤; ; )

(3.31)

Thus the partition numbers of an integer n into parts ≤ m is equal to the partition

numbers of n into ≤ m parts. This basic example confirms the possibility of es-

tablishing an equivalence between two partitions with entirely different conditions.

Now we can figure out how to add all the restrictions by translating them to the

requirements of the generating function. The following discussions assume all the

parts are in descending order from n1 to nm. The unrestricted generating function

can be written as:

G(q|; ; ; ) = Ω̂λ

∞∑
n1,n2,...,n∞=0

qn1+n2+···+n∞λn1−n2
1 λn2−n3

2 · · ·λn∞
∞ (3.32)

Now let us translate and impose the restrictions one by one, and the differences in

the generating function from the last step will be colored blue:

(i) Exactly m parts ⇐⇒ ∀ni ∈ {n1, n2, . . . , nm}, ni > 0 ⇐⇒ nm ≥ 1

We can write down the generating function of partitions of n into exactly m parts

with the help of the regularization operator:

G(q|; ;m=; ) = Ω̂λ

∞∑
n1,n2,...,nm=0

qn1+n2+···+nmλn1−n2
1 λn2−n3

2 · · ·λnm−1−nm

m−1 λnm−1
m

(3.33)

(ii) Each part differs from the next by at least k ≥ 0 ⇐⇒ If i = j − 1, ∀ni, nj ∈
{n1, n2, . . . , nm}, ni − nj ≥ k



Chapter 3. CHS & Composite Fermionization 57

This means that we have to subtract a specific constant from the powers:

G(q|; ;m=; k) = Ω̂λ

∞∑
n1,n2,...,nm=0

qn1+n2+···+nmλn1−n2−k
1 λn2−n3−k

2 · · ·λnm−1−nm−k
m−1 λnm−1

m

(3.34)

where we use the powers of the λi variables to restrict the differences between the

adjacent parts. Also, as long as the difference k is greater than 1, there must be

m distinct parts in the partitions.

(iii) The smallest part is ≥ L ≥ 0 ⇐⇒ nm ≥ L ≥ 0

To restrict the smallest part nm, we can simply subtract L from the power of λm,

considering all the terms with nm −L < 0 will be eliminated by the regularization

operator:

G(q|L≥; ;m=; k)

=Ω̂λ

∞∑
n1,n2,...,nm=0

qn1+n2+···+nmλn1−n2−k
1 λn2−n3−k

2 · · ·λnm−1−nm−k
m−1 λnm−L

m

(3.35)

(iv) The largest part is ≤ N ⇐⇒ n1 ≤ N

Similar to the last step, we can add another formal variable λ0:

G(q|L≥;N≤;m=; k)

=Ω̂λ

∞∑
n1,n2,...,nm=0

qn1+n2+···+nmλN−n1
0 λn1−n2−k

1 λn2−n3−k
2 · · ·λnm−1−nm−k

m−1 λnm−L
m

(3.36)

However, in this way, the regularization operator cannot simplify the final result.

The solution is to introduce another variable x ∈ (0, 1) to the generating function.

Let us consider the case with the largest part equal to j instead:

∞∑
j,n=0

p(n|L≥; j=;m=; k)xjqn

=Ω̂λ

∞∑
n1,n2,...,nm=0

xn1qn1+n2+···+nmλn1−n2−k
1 λn2−n3−k

2 · · ·λnm−1−nm−k
m−1 λnm−L

m

(3.37)
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Then by using the extraction operator, we can write down the generating function

with the largest part ≤ N as:

G(q|L≥;N≤;m=; k) =
N∑
s=0

∞∑
n=0

p(n|L≥; s=;m=; k)qn

=
N∑
s=0

Λ̂(x)
s

[
∞∑

j,n=0

p(n|L≥; j=;m=; k)xjqn

] (3.38)

We can deal with the part inside the bracket (Eq.(3.37)) first, and the trick is to

use the regularization operator to eliminate all the formal variables:

∞∑
j,n=0

p(n|L≥; j=;m=; k)xjqn

=Ω̂λ

∞∑
n1,n2,...,nm=0

xn1qn1+n2+···+nmλn1−n2−k
1 λn2−n3−k

2 · · ·λnm−1−nm−k
m−1 λnm−L

m

=Ω̂λ
(xq)k · (xq2)k · (xq3)k · · · (xqm−1)kλ−L

m

(1− xq) (1− xq2) · · · (1− xqm−1) (1− λmxqm)

=
(xq)k · (xq2)k · (xq3)k · · · (xqm−1)k · (xqm)L

(1− xq) (1− xq2) · · · (1− xqm−1) (1− xqm)

=
q

km(m−1)
2

+Lm

(xq; q)m
x(m−1)k+L

(3.39)

Note that the extraction operator does not commute with the summation with

respect to the same index, so we can write down the final conclusion by getting rid

of the formal variable x:

G(q|L≥;N≤;m=; k)

=
N∑
s=0

Λ̂(x)
s

[
q

km(m−1)
2

+Lm

(xq; q)m
xk(m−1)+L

]
= Λ̂

(x)
N

∞∑
s=0

xs
q

km(m−1)
2

+Lm

(xq; q)m
xk(m−1)+L

=Λ̂
(x)
N

q
km(m−1)

2
+Lm

(x; q)m+1

xk(m−1)+L = q
km(m−1)

2
+Lm · Λ̂(x)

N


∞∑
i=0

[
m+ i

m

]
q

xi+k(m−1)+L


=q

km(m−1)
2

+Lm

[
N +m− k(m− 1)− L

m

]
q

(3.40)
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The benefit of this general conclusion is that we can get most of the commonly-used

generating functions from it without using specific methods for different restric-

tions as usually carried out in the textbooks [289]. The regularization operator’s

application also hints at how to properly manipulate the powers, which could be

generalized to other restrictions. Note that the same notation of the generating

functions will be used in the following discussions considering they correspond to

different physical contexts, such as different statistics or generalized admissible

rules (to be explained later). Below are several useful corollaries:

Corollary 3.4 (Bosonic partitions). The generating function of the partition num-

bers of integer n into at most m parts, each of which is no greater than N denoted

by GB(q|N,m) can be written as:

GB(q|N,m) =

[
N +m

m

]
q

(3.41)

Proof. The key idea here is to observe that the bosonic statistics is equivalent

to requiring the partitions to have at most m parts, which gives the condition

L = k = 0. Thus we have

GB(q|N,m) = G(q|0;N≤;m=; 0) =

[
N +m

m

]
q

(3.42)

Corollary 3.5 (Fermionic partitions). The generating function of the number of

partitions into exactly m distinct parts, the maximal one of which = N , denoted

by GF (q|N,m), is given by:

GF (q|N,m) = q
m(m+1)

2

[
N

m

]
q

(3.43)

Proof. Similarly, requiring the partitions to have m distinct parts is equivalent to

the condition L = k = 1. Thus we have

GF (q|N,m) = G(q|1;N≤;m=; 1) (3.44)
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It is not hard to notice that if we replace q with the Boltzmann factor e−
E
kT ,

these two generating functions are precisely the bosonic and the fermionic partition

function. Before relating these mathematical conclusions to CHSs, let us briefly

introduce how to generalize the generating function to the case with more restric-

tions. This can help us understand non-Abelian states such as the Moore-Read

state in future research. We shall start with another property of the regularization

operator:

Corollary 3.6 (Elimination of coefficients by the regularization operator).

Ω̂λ
λ−k

(1− x)(1− λy)
=

xk

(1− λx)(1− y
x
)

(3.45)

Proof.

Ω̂λ
λ−k

(1− λx)(1− λy)
= Ω̂λ

∞∑
n=0

(λx)n
∞∑

m=0

(λy)m ·λ−k = Ω̂λ

∞∑
n,m=0

(
y

x
)m(xλ)n+m−k ·xk

= xk ·
∞∑
s=0

xs
∞∑

m=0

(
y

x
)m =

xk

(1− x)(1− y
x
)

(3.46)

Then we would like to get the partition function with two restrictions to the dif-

ferences between parts. Here, we only consider the partitions with non-repetitive

parts corresponding to the fermionic statistics in physics. An important observa-

tion of the restrictions can be made:

Proposition 3.1 (Equivalence between partition restrictions)). For the non-negative

consecutive integer set S, denote the set of all the subset of S with four consecutive

integers as S4 and the set of all the parts in the partition p as Sp. Then for Sp ∈ S,
the following restrictions to the partition p should be equivalent and lead to the

same generating function:

∀s ∈ S4, card(s ∩ Sp) ≤ 2 ⇐⇒ pi+2 − pi ≥ 4, i ≤ card(Sp)− 2 (3.47)

Proof. (=⇒) Can be easily proved by using the method of exhaustion.
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(⇐=) ∀i ≤ card(Sp) − 2 and ∈ N, given that pi+2 > pi+1 > pi, we have pmax
i+1 =

pi+2 − 1 ≥ pi + 4 − 1 = inf(pmax
i+1 ), s.t. the smallest set that contains pi+1 is

spi \ {pi}, where sn denotes the subset of S4 with the minimal element n. Thus

card(spi ∩ Sp) ≤ 2, so card(s ∩ Sp) ≤ 2.

which naturally leads to the following:

Corollary 3.7 (Equivalence between generalized admissible rule and partition re-

strictions). The (fermionic) Moore-Read state can be given by the so-called Jack

polynomials (introduced in the next section), with the generalized admissible rule

that there can only be at most 2 electrons in every 4 orbital. Based on the propo-

sition above, it is equivalent to the restriction ni+2 − ni ≥ 4 for any part ni with a

well-defined ni+2 in the partition.

Thus we can derive the following result:

Theorem 3.8 (Moore-Read restricted partitions). For the number of partitions

of n:

(i) into exactly m parts, and m is even;

(ii) each part (in descending order) differs from the next by at least 1;

(iii) each part (in descending order) differs from the second next by at least

4;

(iv) the smallest part ≥ 0;

(v) the largest part ≤ N ;

The generating function is given by:

G(q, x|0≥;N≤;m=; 1; 4) =
x · q

m
2

(q)m
2

· (x; q)m
2

(3.48)

where m,N ∈ N and m is even.
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Proof. Consider the generating function given by:

G(q|0≥;N≤;m=; 1; 4)

=Ω̂λ,µ

∑
n1,n2,...,nm≥0

(λ1µ1xq)
n1 ·

(
λ2
λ1
µ2xq

)n2

·
(
λ3
λ2

µ3

µ1

q

)n3

·
(
λ4
λ3

µ4

µ2

q

)n4

· · ·
(
λm−2

λm−3

µm−2

µm−4

q

)nm−2

·
(
λm−1

λm−2

µm−1

µm−3

q

)nm−1

·
(

λm
λm−1

µm

µm−2

q

)nm

·
m−1∏
i=1

λ−1
i

m−2∏
j=1

µ−4
j µ0

m−1 ·µ0
m

(3.49)

After transforming all the terms in the brackets into simpler forms, with the help

of Lemma.3.2, we can eliminate the formal variants λi and µi term by term. Let

us start with λi:

Ω̂λ
λ−1
1 · · ·

(1− λ1µ1xq)
(
1− λ2

λ1
µ2q
)
· · ·

=
(µ1xq) (µ1µ2xq

2) · · · (µm−2µm−1xq
m−1) ·

∏m−2
j=1 µ

−4
j

(1− µ1xq) (1− µ1µ2xq2) · · · (1− µm−2µm−1xqm−1) (1− µm−1µmxqm)

(3.50)

Then we can eliminate the µj term based on Corollary.3.6:

Ω̂µ

µ1

∏m−2
i=1 µiµi+1 ·

∏m−2
j=1 µ

−4
j ·

∏m−1
k=1 xq

k

(1− µ1xq) (1− µ1µ2xq2) · · · (1− µm−2µm−1xqm−1) (1− µm−1µmxqm)

=

∏m−2
2

i=1 (x2 · q−4i)∏m
2
j=1 (1− qj) (1− xqj)

·
m−1∏
k=1

xqk

=
x · q

m
2

(q)m
2

· (x; q)m
2

(3.51)

Note that here we formally define
∏n

k=1 x ≡ xn. We can also use the regularization

operator to eliminate x in the generating function if we want.

In the next part, we shall introduce a nice way to represent the wave functions of

many FQH states, which also reveals why the partition theory is relevant.
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Figure 3.1: Jack polynomials and the squeezing operation on the disk.

3.4.3 Jack polynomials and generalized admissible rules

The systematic study of the algebraic properties of the polynomials used to write

down the model wave functions (including the initial Laughlin wave functions or

the Moore-Read wave functions afterward, etc.) was carried out by Bernevig and

Haldane [137, 195, 196]. They found that they can be expressed as a specific type

of symmetric polynomials with proper normalization, called the Jack polynomials

(jacks), which are friendly to numerical realizations and possess many nice math-

ematical properties. One can also think of the Jack polynomials as one of the

mathematical objects connecting FQH to CFT because they are conjectured to be

the correlator of Wk(k + 1, k + r) CFTs [294–296].

Let us start with a brief introduction of the Jack polynomials. These polynomi-

als are the unique homogeneous polynomial-type eigenfunctions of the Laplace-

Beltrami operator. We will stick to rotationally invariant systems in the following

part for simplicity. The pseudo-spin structure (coming from an emergent orbital

angular momentum) in the quantized LLs enables us to define second-quantized

wave functions in an occupation-number-like basis for the many-body wave func-

tions as shown in Fig.3.1. For example, the magnetic field can be introduced by

putting a Dirac magnetic monopole at the center of the sphere with a total of 2S

magnetic fluxes, rendering a spinor structure of the single particle the wave func-

tion with total spin S+N , where N is the LL index [20]. Without loss of generality,

we use the LLL with N = 0, so the total number of single-particle orbitals in the
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LLL is No = 2S + 1. We can thus express a many-body state with a string of No

binary numbers, corresponding to the single particle orbitals sequentially from the

north pole to the south pole. We use the integer 1 to denote an occupied orbital

and 0 for an empty orbital [195]. For example, if S = 3 and we have two electrons

around the sphere’s north pole, this state can be denoted as |1100000⟩, with a total

number of seven orbitals.

On the disk geometry, the occupation basis also corresponds to the first-quantized

wave functions with the symmetric gauge. Each digit in the occupation basis from

left to right corresponds to the orbital from the origin (z0k) to the edge (zNo−1
k ),

where zk = xk + iyk is the holomorphic coordinate of the kth electron. The many-

body wave functions for the FQH states are linear combinations of such monomials.

For example, the monomial |1101⟩ in the first quantized form is given by:

|1101⟩ ∼ (z1 − z2)z
3
3 + (z3 − z1)z

3
2 + (z2 − z3)z

3
1 (3.52)

One important characteristic of the Jack polynomial states is the existence of a root

configuration, with all of the occupation bases of the state “squeezed” from the root

configuration as shown in Fig.3.1 [137, 195, 196]. For instance, if one considers the

Laughlin-1/3 state with 3 electrons, the wave function (z1− z2)3(z1− z3)3(z2− z3)3

is a Jack polynomial denoted by Jα=−2
|1001001⟩. Here 1001001 is the root configuration,

and α = −2 in the superscript is derived from the admission rule of the root con-

figuration. All coefficients of the monomials in the Jack polynomial are determined

by α, and these monomials are “squeezed” from the root configuration, so we can

unambiguously determine a Jack polynomial by its α and root configuration. Note

that the Jacks with the same α but different root configurations (one is squeezed

from another) are only linear independent rather than orthogonal.

We denote two monimials m1,m2 and that m2 is squeezed from m1 by m1 ≻ m2.

That implies m2 is obtained from m1 by repeatedly moving two electrons in the

binary string towards each other without changing the total angular momentum of

the monomial. Explicitly for the Laughlin-1/3 state with three electrons, we have
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the following:

J−2
|1001001⟩ ∼(z1 − z2)

3(z1 − z3)
3(z2 − z3)

3

=|1001001⟩ − 3|0110001⟩ − 3|1000110⟩

+ 6|0101010⟩ − 15|0011100⟩

(3.53)

Since all the possible occupation bases are squeezed from the root configurations

above, we can figure out how to get those we need to compose the eigenstates. As

mentioned at the beginning, the model wave functions for the FQH states on the

sphere in many cases are the Jack polynomials characterized by the so-called gen-

eralized admissible rules (also known as clustering properties or generalized Pauli

principle), which is normally represented by three numbers (k, r,N) (sometimes

N is omitted, so we only use (k, r) to denote the rule). Its physical significance

is that there can exist no more than k particles in r consecutive orbitals (in a

system with N particles) [20]. Thus, for example, if we have two jacks with the

root configurations 10010001 and 01100001, then the second one will be truncated

with the (1, 3)-admissible rule. In practice, these generalized admissible rules can

be “read-off” from the (model) Hamiltonian and the particle statistics.

Another efficient method to pick the bases we need is called the local exclusion

condition (LEC), firstly proposed in [204, 205]. A LEC is defined by a triple,

denoted by n̂ = {n, ne, nh}, giving the constraint that there can be no more than

ne electrons or nh holes in a circular droplet containing n fluxes anywhere in the

quantum fluid. For a spherical geometry, one can check the orbitals at the north

pole for the highest weight states.

3.4.4 Isomorphic conformal Hilbert spaces

Based on the discussion above, the total power of the variables in a monomial

is precisely the L̂z quantum number. Then we can conclude that the dimension

of the Lz sectors is determined by the partition number of Lz ∈ N with some

restrictions from the particle statistics, the geometry, the symmetry, and the model

Hamiltonian (represented by some generalized admissible rules). It is possible

to write down the generating function of the Lz sector degeneracies despite the

difficulty of accurately solving the degeneracy of each Lz sector.
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Now that we have learned about how to properly use the generating functions to

represent the counting in the Lz sectors within CHSs and how to restrict these

generating functions with minimal separations between parts. Furthermore from

the discussion on the Jack polynomial formalism of writing down the model wave

functions for many FQH states, as Fig.3.2 shows, we can see that these restrictions

are exactly corresponding to the generalized admissible rules describing different

model Hamiltonians, which define the CHSs.

Restrictions

define

Generating
function

Generalized
admissible rule

truncate

Lz sector
degeneracy ⊂

define

Model
Hamiltonian

Conformal
Hilbert Space

describe

encode

giveequivalent

Figure 3.2: Relations between the generating function with restric-
tions and the degeneracy of Lz sectors within some CHS.

Then the next question to be answered is, how to define the equivalence between

different CHSs based on the generating functions? Let us firstly list the properties

that such a relationship should have:

• The equivalence depends on some symmetry. Because symmetry can bring

good quantum numbers (such as the Lz due to rotational invariance), which

can lead to degeneracies within the CHS. This can provide a corresponding

generating function to set up the equivalence. In this thesis, we will only

discuss rotational invariance but it can definitely be generalized to other

cases, which remains to be studied in the future.

• The equivalence should be insensitive to the exact range of the angular mo-

menta. Because we are establishing the equivalence between different CHSs

with (possibly) different particle numbers and orbital numbers, the range of

the angular momenta is almost certain to differ. So the thing we should care

about is the relative position of the Lz sectors within each CHS.



Chapter 3. CHS & Composite Fermionization 67

• The equivalence should be well-defined for any system size. Indeed in the

context of FQH, theoretical concepts are normally considered in the ther-

modynamic limit. But we want to define a stronger relation showing that

two CHSs are always equivalent, which is also valuable for carrying out the

composite fermionization introduced in the next section.

Based on all these points, here we introduce the concept of isomorphism of CHSs:

Definition 3.8. (Isomorphism of CHSs) Given two CHSsH1 andH2, the Lz sector

degeneracies of which are described by the partition sequence, p1(n) and p2(n
′)

correspondingly with the generating functions G1(q) and G2(q). If the generating

functions fulfill the following:

G1(q) = G2(q) · qn, n ∈ Z (3.54)

then H1 and H2 are called isomorphic to each other, denoted by H1
∼= H2.

It can be seen that such a definition fulfills all the requirements above. From the

mathematical point of view, we believe that it is proper to call such a relation

“isomorphism” considering the isomorphism between (finite-dimensional) vector

spaces is given by their identical dimensions, which in our case are interpreted as

the degeneracies in each Lz sectors. Furthermore, the isomorphism defined here

has explicit physical meanings rather than only serving as fancy mathematics. For

example, one can study the zeros of these generating functions of polynomial-

type in C and obviously, the only difference between isomorphic ones will be the

multiplicity of the zero point at the original point. Recall that Lee and Yang

determined the phase transitions based on the zeros of partition functions [297,

298], and we can naturally speculate that the isomorphic CHSs are of the same

“universality”. More physical insights about this relation will be provided in the

next section.

Given that all the information about the CHS is contained in the generating func-

tions, we are not surprised that it is possible for two CHSs with entirely different

physical conditions to be isomorphic. Before introducing more examples in the next

section, we can look into one of the simplest examples, which is the isomorphism

between the Hilbert spaces with different geometries:
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Proposition 3.2. The Hilbert space of an FQH system on the disk is isomorphic

to the one with the same electron number and orbital number on the sphere.

Proof. The range of the Lz quantum numbers is just shifted from the disk to the

sphere. So for a given particle number Ne with No orbitals, we have:

G(q| ⊂ B2) = G(q| ⊂ S2) · q
Ne(No−1)

2 (3.55)

Thus in practice, we can adopt a constant g to denote the shift caused by the

geometry. Besides defining the isomorphism between CHSs, the generating func-

tion formalism can also be used to calculate other physical quantities, considering

they are the “prototype” of partition functions. For example, one can calculate

the thermal Hall coefficient (related to the central charge) of an FQH phase by

differentiating the corresponding generating function [130, 137]. Also, the count-

ing pattern given by the generating function matches the entanglement spectrum

(generally in the lower part) [175, 221]. All these properties can be traced to the

relation between FQH states and CFT correlators, as explained in the last section.

3.5 Composite fermionization

We have established a well-defined isomorphism between different CHSs, so it is

natural to think about the mapping from one CHS to another. In this section, we

would like to reinterpret the concept of CFs (the composite particles of electron

and magnetic fluxes) as something unambiguously induced by the mapping between

isomorphic CHSs. Furthermore, although there is no particle-hole symmetry in the

sub-Hilbert spaces of a single LL, one can still get the particle-hole conjugate of a

state by mapping it to some CHS of CFs. The same idea can even be generalized

to particles with totally different statistics, which will be mentioned at the end of

this section.
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3.5.1 Brief review on the composite fermion theory

The strong-coupling nature of the FQH phases of electrons is due to the dominance

of the Coulomb interaction over other energy scales, which makes the problem hard

to solve. However, the CF theory provides an effective and phenomenological way

to eliminate the strong-coupling interactions between the electrons and make the

FQH phases of electrons map into the IQH phases of CFs, but still retain the

important topological features. The basis of the CF theory is the intuitive claim

of attaching each electron with an even number of magnetic flux quanta (to keep

the fermionic statistics), which forms a new bound state and renders the former

partially-filled LLs to a fully-filled CF Λ-levels (or simply CF levels) due to the

reduced magnetic field as shown in Fig.3.5. Furthermore, the CF theory can also

map an electronic FQH state to a CF FQH state [71–76].

According to the founder of the CF theory, it was inspired by the concept of vortices

in superconductors. The key idea of flux attachment originated from observing the

Hall resistivity plateaus, where one can clearly see those corresponding to the filling

factor 1/3, 2/5, 3/7, and so on up to 1/2, with their corresponding particle-hole

conjugate partners [74]. Moreover, these filling factors obey a specific pattern like

ν = n/(2p ·n± 1), so one can modify an electronic wave function by absorbing the

additional 2p fluxes into the electrons to get a phase with an integer filling factor

ν∗ = n. Furthermore, some potential signatures of CFs near specific plateaus were

observed in experiments, which to some extent confirms the validity of the flux-

attachment argument [299, 300]. But the nature of these emergent CFs remains

controversial.

The CF picture can be integrated into different theoretical approaches to FQHE.

One choice is to use CFs coupled to a Chern-Simons gauge field with some mean-

field approximations when writing down a topological field theory (e.g., in the

Lopez–Fradkin theory, etc.) [301, 302]. However, a more commonly used method

is to write down the first-quantized ground-state wave explicitly functions Ψ n
2pn±1

from a CF trial wave function Φ±n by following some routines [74]. The result can

be written as:

Ψ n
2pn±1

= PLLLΦ±n

∏
j<k

(zj − zk)
2p (3.56)

where PLLL means that one need to move all the z̄ to the left (“normal-order”) and

then replace z̄ with ∂
∂z
, i.e. a projection to the LLL. From this point of view, the
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Laughlin wave function can be derived from the IQH wave function of the CFs at

ν = 1. The same method can also be generalized to some excited states or FQH

states with partially polarized spins.

The intuitive flux-attachment picture is definitely one of the advantages of the

CF theory. Furthermore, the wave functions given by Eq.(3.56) were proved to

have lower energy than those given by the Haldane-Halperin hierarchy formalism

[99], which cannot deal with partially-polarized FQH states and the Fermi sea at

ν = 1/(2p) as well. However, there are also several issues to be further cleared out.

Here we list some of them: if we start from an IQH state of CFs, with the magnetic

field strength increasing, the interaction between the CFs will eventually become

significant, and this requires us to consider the FQH states of CFs. So it seems that

the CF theory only postpones the difficulty of dealing with the strong couplings

rather than fully resolves them. Similarly, some FQH states are interpreted as

arising from the pairing of the CFs; it is also essential to understand how the

pairing emerges and vanishes with a magnetic field. Another concern is about the

nature of flux attachment. In principle, phase transitions could occur during this

process, leading to significant modifications to the current CF theory. More details

about this theory can be found in Ref.[74, 76].

In short, the CF theory is a very effective formalism based on phenomenology to

understand FQH phases, which has not been fully understood.

3.5.2 Composite fermionization as the mapping between

isomorphic CHSs

In the CF theory, the procedure based on Eq.(3.56) of getting the electronic wave

function from the CF trial wave function is called the composite fermionization.

But from the isomorphism between different CHSs, one can also define a mapping

between the states to accomplish the same thing and even more, which is a natural

idea from a mathematical point of view. Thus in this section, we will illustrate why

this mapping is also physically relevant and introduce how to properly carry out

the composite fermionization between CHSs, which can be regarded as the rigorous

generalization and reinterpretation of this routine.
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Let us start with the Laughlin states, the ground states of the linear combination of

two-body Haldane pseudopotentials. The corresponding generating function have

been derived as in Theorem.3.3: for the Laughlin state at the filling factor ν = 1/m

with Ne electrons and No orbitals, it is given by:

GLaughlin−1/m = q
mNe(Ne−1)

2
+Ne+g

[
No − (m− 1)(Ne − 1)

Ne

]
q

(3.57)

where g is the geometric shift determined by the system’s geometry, which will not

influence the isomorphism. Note that this expression also applies to the quasihole

states (i.e., No ≥ m ·Ne − m + 1). Our task is to find a dual description of the

whole CHS, especially the ground state, which is equivalent to looking for the

operations that transform the generating function in Eq.(3.57) to those describing

other isomorphic CHSs. One can easily find such operations from the properties

of q−Gaussian polynomials (the power function will not influence the isomorphism

at all). One of them is to keep the particle number Ne as a constant but change

the number of orbitals. If the new generating function is also corresponding to a

Laughlin state, one can solve the Diophantine equation to know about the new

CHS:

(m′ −m)(Ne − 1) = N ′
o −No (3.58)

For fermionic states, m can only be odd numbers, which means that m′ −m has

to be even. Thus in the context of CHS, we are attaching/detaching an even

number of fluxes to/from each electron to form or decompose the CFs, denoted by

cf2k, k ∈ Z, because the total number of fluxes has to be a constant to make sure

that we are still describing the same physical system. Meanwhile, as m changes

to m′, the restrictions in the new CHS become different as well, corresponding to

a new model Hamiltonian. Such a procedure is equivalent to the flux-attachment

argument in the CF theory. The difference is that we get this naturally from

searching for the isomorphic CHSs of the given one, but in the CF theory, this

argument serves as a basic assumption, so they cannot be verified or falsified. Note

that the quantum states in a CHS can also be regarded as a unitary representation

of the Lie algebra g of some Lie group G (in our case, the SU(2) group describing

the angular momentum) so we will not be surprised by getting the same result with

other approaches such as Lie algebra.
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After getting an isomorphic CHS H2 for the given H1, one can always find a proper

one-to-one mapping between the states as:

ϕ1

ϕ2

ϕ3

...

ϕi

...


H2

=



F11 F12 F13 · · · F1j · · ·
F21 F22 F23 · · · F2j · · ·
F31 F32 F33 · · · F3j · · ·
...

...
...

. . .
...

...

Fi1 Fi2 Fi3 · · · Fij · · ·
...

...
...

...
...

. . .


︸ ︷︷ ︸

F-matrix



ψ1

ψ2

ψ3

...

ψj

...


H1

(3.59)

where we call the transformation matrix the F -matrix (inspired by S-matrix but

between different and mostly orthogonal Hilbert spaces). Isomorphism ensures that

F-matrix is square and thus invertible (the orthonormal states ensure the full rank).

In this thesis, by composite fermionization, we mean the process of (completely or

partially) solving the F -matrix for two isomorphic CHSs. For simple cases like

Laughlin states, the ground states in the isomorphic CHSs are the unique highest-

weight state in the Lz = 0 sector, so one can directly map them to each other.

Generically speaking, there could be degeneracy in the eigenstates with the same

Lz and L2 quantum numbers, which implies that the F -matrix is not uniquely

determined, and such a redundant degree of freedom can be distinguished as a

gauge. Meanwhile, from the well-ordering theorem [303], one can always attach

an ordered structure to the degenerate states within some Lz sectors. Thus one

way to fix the gauge for the mapping is by using a small perturbation of other

pseudopotentials, and we will show the details in the following part. Meanwhile,

one can choose other gauges according to different requirements; for example, if we

want the CF particles from composite fermionization to be more localized, then

the density distribution can be adopted to choose from the available gauges.

Consider the Laughlin state at ν = 1/5 of electrons on the sphere, for exam-

ple, which is the unique ground state of the model Hamiltonian ĤLaughlin−1/5 =

V̂ 2bdy
1 + V̂ 2bdy

3 . The left and the right column in Fig.3.3 shows the whole mapping

between all the eigenstates in the electronic CHS with 3 electrons and 11 orbitals

defined by ĤLaughlin−1/5 and in the CF’s CHS with 3 CFs and 7 orbitals defined

by ĤLaughlin−1/3 = V̂ 2bdy
1 . Starting from the highest Lz sector, the whole Hilbert

spaces concerning the corresponding model Hamiltonians can be constructed by

acting L̂− successively. and clearly the electronic Laughlin state at ν = 1/5 can be
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mapped to the Laughlin-1/3 state of cf2 as discussed above. More examples can be

found in Chap.5. Furthermore, composite fermionization also allows determining

the degeneracy within each Lz sector as shown in the middle column of Fig.3.3,

which is the difference between the degeneracy of neighboring Lz sectors. If the

restriction is given by other things rather than the generalized admissible rule (e.g.,

LEC), then the argument about the highest weight state degeneracy could fail.

This formalism can be generalized to higher CF levels (in analogy to the LLs).

As Fig.3.4 shows, combining one electron with two fluxes allows us to write down

each CF as “10” in the root configurations. On the electronic side, the vacuum

consists of three fluxes; on the CF side, there will be two more fluxes. Then by

adding particles (electrons with two fluxes on the left and CFs on the right side),

we can find the equivalence between the Laughlin state at ν = 1/3 of electrons and

a fully-filled CF level (a CF IQH state). If more particles are added, we can also

observe the correspondence between the FQH state at ν = 2/5 of electrons and the

CF IQH state at ν∗ = 2, etc.

It is worth noticing that this approach does not make any reference to a particular

wave function, which therefore could be less useful in evaluating experimentally

relevant numbers such as gaps, collective mode energies, etc. because it is hard

to do quantitative computations with it for large system sizes. In this case, one

can take the wave-function-based CF approach to get a variational wave function,

which also works for the states without model Hamiltonians [71, 74]. But for the

second LL (SLL) or the longer-range interactions, the CFs end up interacting, and

other approaches are needed to understand the states occurring in the SLL.

3.5.3 Particle-hole conjugate within a CHS

By observing Eq.(3.57), we can see that if all the occupied and unoccupied orbitals

are exchanged, and the restrictions remain unchanged for the unoccupied ones, the

generating function will stay the same, but of course, the CHS will be different.

Thus we can also establish a bijection between these two CHSS, which can be un-

derstood as the particle-hole (PH) conjugate of each other. Note that usually, this

is only well-defined within a single LL. Otherwise, there will be no “complete” elec-

trons in a sub-Hilbert space anymore. However, the PH conjugation can be defined

for any type of fermions, in particular for CFs and composite fermionization, which
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allows us to map an electronic state in a CHS to a CF state in one CF level, where

we can get the PH conjugate of the CF state and map it back to the electronic

basis. Explicit examples will be discussed in Chap.5. The complete commutative

diagram between the electronic FQH and CF states is shown in Fig.3.6.

3.6 Summary

In this chapter, we introduced the essential concept of CHS, which originates from

the conformal invariance in the sub-Hilbert spaces defined by model Hamiltonians.

Meanwhile, as one of the most promising and intuitive theoretical frameworks, the

CF theory can explain and quantitatively give the model wave function for many

FQH states. We provide a novel interpretation of the composite fermionization

as the unitary mapping between isomorphic CHSs, which leads to equivalent CF

descriptions of the same FQH states. The isomorphism between CHSs can be

rigorously confirmed from the generating functions of their Lz sector degenerates,

which also relates the FQH states to conformal blocks with the same generating

function. This new approach does not require a presumed CF model wave function

and can formally map any given state in one CHS to another.

Furthermore, the concept of the CFs as the fluxes attached to electrons naturally

emerges in the bijection between isomorphic CHSs. Thus one can regard this as a

generalization to the original CF theory. Furthermore, by mapping an FQH state

within some CHS to the fully-filled IQH state of CFs and taking the particle-hole

conjugate, one can unambiguously define its particle-hole conjugate within this

CHS even without well-defined electrons or holes, which can explain the origin of

multiple graviton modes in FQH phases as shown in Chap.5. In the near future,

it will be significant to generalize this formalism for those states that cannot be

expressed as jacks but still have some clustering properties.
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Figure 3.3: Isomorphism between the CHS of electrons and CFs. The
electron CHS (left column) is defined by the model Hamiltonian V̂ 2bdy and the
CF one (right column) is the lowest CF level. All the eigenstates (k denotes
the degeneracy) of the angular momentum operator can be expressed as the
linear combination of the states on both sides, from which one can easily see the
degeneracy of the highest-weight states.
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Figure 3.4: Composite fermionization between electron and CF basis.
On the left column, each state is a jack with the root configuration in the ket and
on the right side, a monomial. One can clearly see the correspondence between
the electronic Laughlin state at ν = 1/3/Gaffnian state at ν = 2/5 and the CF
IQH states.
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Figure 3.5: The concept of CFs. A CF is given by attaching one electron
with an even number of magnetic flux quanta (which is also called flux attach-
ment). The simplest outcome is that one can eliminate the strong-coupling
interactions between the electrons and makes the FQH phases of electrons de-
generate into the IQH phases of CFs. Furthermore, one can also relate the FQH
states at different filling factors by using the idea of flux attachment.
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Figure 3.6: Commutative diagram of electronic states and CF states
within different CHSs. Here we use particleflux no.

filling factor to denote the states
and take the Laughlin state at ν = 1/7 as an example, which can be described
by three different CF states. Ucf denotes the unitary transformation or compos-
ite fermionization between isomorphic CHSs. One can find the corresponding
particle-hole dual states (denoted by C−1) within H1 (null space of V̂ 2bdy

1 ), H3

(null space of V̂ 2bdy
1 + V̂ 2bdy

3 ) or the LLL, and map them back to the electron
basis. For the fully-filled CF level, we can also increase the LL index to get
more Jain states, but the experimental signature could diminish with higher CF
levels, as the fading color represents. The same formalism can be generalized to
the Laughlin state with an arbitrary filling factor.



Chapter 4

Graviton Modes in Fractional

Quantum Hall Liquids

In this section we would like to introduce some quantitative results of the specific

low-lying neutral excitations in the FQH phases, called the graviton modes. It is

not a coincidence that this mode is named after such a highly nontrivial particle,

so an introduction to the gravitons will be provided in the first section, where we

will focus on the progress of how physicists understand this particle from different

approaches and what we expect from the gravitons as specific modes in FQH phases.

More interpretations of the FQH gravitons will be introduced in the next chapter.

In the second section, we shall see the method to construct the wave function for the

graviton modes, which requires a similar approximation as the one Feynman used

to study the roton modes in the superfluid. A vital quantity called structure factor

will be introduced afterward, with the help of which we can analytically derive the

energy of the graviton modes with respect to the three-body and two-body model

Hamiltonians. The results can provide many interesting physical insights into the

structure of the CHSs and the low-lying excitations, which can be experimentally

observed, as introduced in the last section.

4.1 Gravitons as quasiparticles

To understand the differences and, more importantly, the similarities between the

FQH graviton modes and the gravitons in space-time, we need to know more about

79
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the concept of gravitons in a more general context, especially the role it plays in

physics.

Theoretically speaking, an intuitive way to understand gravitons is to relate them

to the gravitational wave, which has been discovered from the merging of black

holes [304]. Their relationship is very similar to the one between photons and elec-

tromagnetic waves or phonons and acoustic waves. They are the quantization of

gravity and carriers of gravitational radiations at the quantum scale. However, as

the most intriguing and challenging question in contemporary physics, the quan-

tization of 4D gravity (also known as quantum gravity), or more precisely, the

attempt to include gravity into a coherent formalism with the other three forces

described by quantum field theory, is far from complete, which leads to the incom-

patibility in the large (governed by general relativity, GR) and the small scales

(based on quantum field theory, QFT) in physics [305, 306].

Technically speaking, we tend to understand the QFT as an effective low-energy

one, which requires the theory to be irrelevant to the ultraviolet(UV) part, which

can be renormalized to get a convergent result that is the same as the complete the-

ory. The main issue of merging gravity into this formalism is that we need infinite

terms to cancel out the infinities in the context of QFT (or non-renormalizable).

Furthermore, the role of time is different in these two theories, which is equivalent

to other dimensions in GR but more like a special parameter in QFT (there are

spatial position operators but no time operators).

The deeper reason why QFT and GR cannot be consistent can be found when one

tries comparing GR with other successful gauge theories (such as the U(1) theory

describing electromagnetic fields) to check their differences: The gauge theories are

considering the dynamics of the bundle sections when the geometry is fixed, but GR

is considering the dynamics of the geometry (differential structure) itself [307, 308].

Also, the diffeomorphic invariance in GR ensures that all the observables should

be global in a quantum gravity theory, but QFT is instead a theory about local

observables [292]. Recently there has been a promising argument called AdS/CFT

correspondence that may reconcile this point, which can define a local QFT on the

asymptotic space-time boundary to describe the global quantum gravity in bulk

[279]. Of course, this list of contradictions can still be expanded. Still, the main

message here is that whether one tries to make the QFT more gravity-like, or

the GR more quantum-like, is unlikely to succeed. The introduction of gravitons,
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though well defined by all means (one can consider them as the spin-2 or more

precisely helicity-2 and massless representations of the Poincaŕe group without

invoking other details), is more or less a dangerous but understandable move for

unifying the gravity and the quantum, considering it cannot be described by QFT

and is not needed in GR.

There have been several novel theories aiming at solving this dilemma, among which

the most famous one is the string theory (which is believed to be self-consistent

and uses more languages of QFT) [309, 310]. However, the scale that string theory

describes is around Planck’s length, so it seems hopeless to observe anything to

support it in the experiments for now. One of the most important predictions of

string theory is the existence of gravitons as closed strings [311, 312]. But things are

not optimistic for the observation of gravitons either due to the significantly small

cross-section as predicted [313]. Another radical attempt called emergent gravity

proposed the possibility that gravity could be not a fundamental interaction at all,

but only an emergent entropic force from quantum entanglement [314, 315]. So

far, none of these arguments have been or even gotten close to being verified.

Thus to study gravitons, there seem to be two choices for the physicists; one is by

constructing more powerful detectors than the existing ones (for around 37 orders

of magnitude as estimated by Dyson [316]), which might be something we have to

make happen in the future to directly detect the gravitons; or more realistically,

by taking a detour, to see whether it is possible to simulate something similar in

specific systems. Condensed matter systems can be regarded as the best candidate

for this because of the emergence of abundant quasiparticles that has been observed

[317]. In the following sections, we would like to show that one can find the behavior

of massive spin-2 gravitons in FQH droplets. The energy of these modes can be

rigorously derived from a microscopic picture. On the other hand, the emergence of

gravitons in a quantum liquid entirely consisting of electrons also raises a question

about the nature of space-time: will there also be some Planck particles just like the

electrons in FQH liquids, the interaction of which is the origin of the fundamental

forces? Maybe they are precisely the strings or something else. But studying the

behavior of these FQH graviton modes can help us understand the gravitons better.

The study of the FQH graviton modes also contributes to our understanding of the

geometric aspects of FQH phases [230, 318, 319]. As neutral excitations, graviton

modes can be experimentally measured with inelastic photon scattering since the
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momentum transfer of the photons is small [108, 109, 114, 320–322]. An acoustic

crystalline wave is also predicted to act like a gravitational wave, which can interact

with the graviton modes as a probe [323]. Furthermore, an optimal-control-based

variational quantum algorithm has been designed for realizing the graviton mode in

quantum computers [187]. There has also been much interest in the graviton mode

due to its spin structure, allowing it to couple selectively to circularly polarized

light, making them useful for experimentally distinguishing different topological

phases [324]. In addition, it has been recently suggested that coupling the incom-

pressible ground state to the graviton mode from geometric deformation can be

responsible for the quench dynamics in FQH [236]. In the context of these experi-

mental proposals and numerical results, a Dirac CF theory conjectures that certain

FQH phases may have more than one graviton mode [325, 326]. Thus, from the

theoretical and experimental perspectives, analytic results of long-wavelength neu-

tral excitations can help us understand the fundamental nature of the geometric

aspects of the FQH topological phases.

4.2 Single mode approximation

It is helpful to get a model wave function for the mode we study in a microscopic

formalism. In this section, we shall review how to get the variational wave function

describing the FQH graviton modes (which had not been called “graviton modes”

when GMP first discovered it) and several concepts relevant to graviton modes

that are often mentioned in the literature.

The first-ever single mode approximation (SMA) is believed to be made by Feyn-

man when he was studying the collective modes in superfluid 4He [48, 49]. A

significant feature of the superfluid spectrum is the linear low-lying excitations

at small wave numbers (or long wavelengths) followed by a roton minimum [264].

Feynman argued that there must be low-lying phononic collective excitations based

on the observation that there can be no nodes in bosonic ground state wave func-

tions. The variational wave function of these low-lying excitations with a specific

momentum q can be derived unambiguously from a given (uniform) ground state

|0⟩ by using one density operator (that is why it is called “single”) on it:

|q⟩ = 1√
N

· ρ̂q|0⟩ (4.1)
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which will be orthogonal to the ground state while preserving the intrinsic cor-

relations, and the normalization factor is denoted as N here. This is similar to

how we get the excited state of quantum harmonic oscillators by simply multiply-

ing a displacement operator to the ground state ψ0(x) to change the parity, i.e.,

ψ1(x) = x̂ψ0(x). It is worth noticing that these modes correspond to density fluc-

tuations in the ground state because the probability of a state ⟨q|q⟩ ∼ ρq, where

ρq is the density at wave vector q, which means that those states acting like den-

sity waves will have a higher probability than more uniform ones. Furthermore,

Feynman also gave the expression for the energy of these modes by observing the

similarity between the normalization factor and the static structure factor S(q),

which will be introduced at length in the next section [48, 49]:

∆(q) =
q2

2m ·S(q)
(4.2)

where m is the single-particle mass. This expression qualitatively agreed well with

the experimental results in the long-wavelength limit and successfully predicted

the roton minimum.

Unsurprisingly, collective excitations are also observed in the spectra of FQH

phases. GMP found that it is possible to use the single mode approximation to

describe a species of these modes called the magneto-roton modes near the long-

wavelength limit as shown in Fig.4.1, even though the underlying particles in FQH

phases are fermionic electrons [51, 52]. It seems natural to find low-lying single-

particle (thus charged) excitations in generic fermionic systems as well because of

the existence of the Fermi surface, but for IQH phases (ν ∈ N+) with a strong

magnetic field, the single mode approximation is valid without LL mixing in the

long-wavelength limit because of the Kohn’s theorem [327]. But for FQH phases

(ν ∈ Q+), there will be low-lying intra-LL excitations, and if we directly apply

the density operator on the ground state, the resulting state will have quite high

energy near the next LL. Thus GMP made a slight modification by replacing the

density operator with the guiding-center density operator [51, 52] as introduced in

Sec.2.3:

|ψq⟩ =
1√
N

· δ ˆ̄ρq|ψ0⟩ (4.3)
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where N is the normalization factor, and we have defined the regularised guiding

center density operator as:

δ ˆ̄ρq = ˆ̄ρq − ⟨ψ0 |ρ̂q|ψ0⟩ (4.4)

so this mode is also called GMP mode because GMP first found its model wave

function. As a result, all the relevant quantities, such as the static structure factor,

will be projected to a single LL. This mode |ψq⟩ based on the modified single mode

approximation was found to describe the neutral density mode with the wave vector

up to the one corresponding to the magneto-roton minimum (analogous to the roton

minimum in the superfluid spectrum) very well by numerical results, even better

than Feynman’s original application to 4He, because the magnetic field renders

the orbitals of electrons to be closed, which automatically fulfills the continuity

equation without back-flow corrections:

∇ · ⟨Ĵ(R)⟩ = −1

2
∇ · ⟨∇× ρ̂R · ez⟩ = 0 (4.5)

where ez is the unit vector along the orthogonal direction to the surface [52].

Meanwhile, there can still be currents after the LL projection due to the drift

along the direction of E×B. When the wave vector gets larger than the magneto-

roton minimum, the single mode approximation will fail because other modes, such

as multi-roton modes, can couple to the density fluctuation as well [112]. As for

the leading role in this thesis, the graviton modes are exactly the neutral density

modes in the long wavelength limit, so the wave function in Eq.(4.3) is reasonable

to be used as their model wave function.

Furthermore, this mode is found to possess a quadrupole moment in the long-

wavelength limit, so people also call it a quadrupole mode, which becomes a dipole

moment near the magneto-roton minimum. This can be easily seen when we nu-

merically construct the SMA wave function, which is found to be equivalent to an

angular momentum boosting after LL projection on the sphere [199]:

|ψL,M⟩ =
∑
i

ĈS,L,S
mi+M,M,mi

|ψ0⟩ (4.6)

where i is the particle index, L denotes the additional angular momentum added

to each electrons starting from 2 and ĈSLS
m′Mm|m⟩ = CSLS

m′Mm |m′⟩ is the operator

giving the corresponding Clebsch-Gordan coefficients. It has been verified that the
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Figure 4.1: Illustration of the excitation spectrum of the Laughlin
state. The graviton mode is the magneto-roton mode in the long-wavelength
limit.

single mode approximation is exact for the magneto-roton modes in the L = 2

and 3 sectors. For graviton modes in a rotationally invariant system, we require

L =M = 2. Thus the corresponding root configurations of the FQH states can be

given by boosting the second electron by 2. For example, the roots of the graviton

modes of the first two Laughlin states can be written as:

1·1·00◦0◦01001001001001 · · · (ν = 1/3) (4.7)

1·001·000◦0◦0010000100001 · · · (ν = 1/5) (4.8)

which shows a clear quadrupole structure consisting of two quasiholes(denoted by

the dots) and two quasielectrons(denoted by the circles).

To wrap up, the terms we have used can be organized into the relation:

Graviton mode ↔ GMP mode ↔ Quadrupole mode

↔ Magneto-roton/Density mode with q → 0

which reveals different aspects of this mode. In the following discussions, we will

only call |ψq⟩ the graviton mode, defined by:
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Definition 4.1. The SMA wave function describing the graviton modes

|ψq⟩ =
1√
N

· δ ˆ̄ρq|ψ0⟩ (4.9)

which we believe is the most proper name to reveal the geometric nature of this

mode as explained in the next chapter.

4.3 Structure factor

Just like how we can see things by receiving and processing the photons with

specific frequencies and momenta scattered by the objects, experimentalists use

the same idea to probe the internal structure of crystals (indeed we can directly

observe the structure by using scanning tunneling microscopy(STM) nowadays but

let us ignore this technique for now). The difference is that normally the particles

they choose are not the photons with the frequency of visible light, but photons

with higher frequencies (like X-rays), electrons, or more ideally, neutrons (because

they are neutral but not spinless, sensitive to light elements and able to distinguish

isotopes). The collision between the probing particles and the lattice could be

elastic, which means that there will only be momentum transfers (q changes),

or inelastic, which is commonly seen in neutron scattering or Raman scattering

experiments with both energy and momentum transfers (both ω and q change)

[264]. In the following discussions let us assume that the scattering is coherent, i.e.

there will be no spin flipping, and we will introduce the physical significance and

properties of an important quantity called the structure factor, and its interplay

with the SMA state.

The basic idea is that when we calculate the scattering rate by using Fermi’s

golden rule [328] (now we need to use the quantum mechanical formalism) and

Born’s approximation [329], it is found to be proportional to the dynamic structure

factor, defined as:

S(q, ω) ≡ 1

N

∫ ∞

−∞
dteiωt

N∑
j,k=1

〈
eiq · r̂j(t) · e−iq · r̂k(0)

〉
i

=
1

N

∫ ∞

−∞
dteiωt ⟨ρ̂−q(t)ρ̂q(0)⟩i

(4.10)
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Thus from this definition, we can interpret it as the quantitative description of the

dynamical density correlations. Here ⟨ ⟩i denotes taking the average over all the

possible initial states, so we can write down an equivalent expression as:

S(q, ω) =
2π

N

∑
i

e−βEi

Z
|⟨ψi |ρq⃗|ψf⟩|2 · δ [ω − (Ef − Ei)] (4.11)

where β is the Boltzmann coefficient and Z is the partition function of the initial

states. This turns out to be the spectral function of the SMA state |ψq⟩ = ρ̂q⃗|ψf⟩
in the Hilbert space consisting of the initial states! As we shall see later, these

properties lead to the important role of the structure factor in the calculations

about the graviton modes.

Meanwhile as S(q, ω) provides a distribution of the frequency ω, we can natu-

rally study the corresponding moments µn. The zeroth moment is called a static

structure factor, given by:

S(q) ≡ µ0 [S(q, ω)] =

∫ ∞

−∞

dω

2π
S(q, ω) =

1

N

∑
j,k

⟨ρ̂−q(0)ρ̂q(0)⟩i (4.12)

Thus if we look at the S(q) in a system in equilibrium, it should be directly related

to the two-point density correlator. Also, consider the case with a unique initial

state |ψ0⟩, the static structure factor provides nothing but the normalization factor

of the corresponding SMA state constructed from |ψ0⟩.

The first moment is called a oscillator strength:

f(q) ≡ µ1 [S(q, ω)] =

∫ ∞

−∞

dω

2π
ωS(q, ω) =

1

2N

〈[
ρ̂−q,

[
Ĥs, ρ̂q

]]〉
i

(4.13)

where Ĥs is the Hamiltonian of the probed system. For a generic system with a

commutative geometry (so the operators along orthogonal directions commute),

the commutator can be derived explicitly [52]:

〈[
ρ̂−q,

[
Ĥs, ρ̂q

]]〉
i
=
Nq2

m
(4.14)

where q = |q| and m denotes the mass of the particles in the system. The corre-

sponding oscillator strength is q2/2m, also called the f-sum rule [264, 330]. The

expectation value of the energy of the excitations created in this process is given
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by the ratio:

∆(q) =
f(q)

S(q)
(4.15)

So the static structure factor serves as the renormalization factor of the energy

gained by a single particle from ℏq due to the particle configuration in the system,

which will be unity if there is no internal structure at all (i.e. a single particle

scattering). Moreover, ∆(q) in a system with commutative geometry will give the

Feynman-Bijl formula [49, 331]:

∆(q) =
1

S(q)

q2

2m
(4.16)

which will fail when there is a magnetic field present in the system because it will

bring non-commutativity to the orthogonal directions. But Eq.(4.15) still holds.

In 1985, GMP first transplanted the formalism above to the collective modes in

FQH phases as introduced in the last section. The f -sum rule in this case gives

the upper bound of the collective-mode dispersion, which reveals the equivalence

between the exactness of SMA and how much the density-wave modes saturate the

f -sum rule. Furthermore, they define the guiding center static structure factor S̄

and the guiding center oscillator strength f̄ and found that both quantities have

the quartic leading term in the long-wavelength limit. In 2011, Haldane set up the

relation between S̄ and f̄ to the guiding center shear modulus of an FQH droplet,

which also showed their geometric nature [230].

The graviton modes are constructed by using the density fluctuations from the

ground state, so we can imagine that they should contribute to the static structure

factor as well. It is worth noticing that the definition of the static structure factor

can be different among literature. For example, it could be defined per magnetic

flux or per electron, etc. In the following discussions, we will adopt the convention:

Definition 4.2. Regularised two-body (static) guiding-center structure factor for

the unperturbed ground state:

Sq =⟨δρ̂qδρ̂−q⟩0 (4.17)

where ⟨ ⟩0 denotes taking the expectation value with respect to the ground state.

By doing so we can clearly see that the normalization factor N in the SMA wave

function Eq.(4.3) is exactly the two-body structure factor Sq. Haldane derived an
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important property of this quantity, called the self-duality, which holds as long as

the density matrix is translationally invariant, given by:

Sq − S∞ = ξ

∫
d2q′

2π
eiq×q′

(Sq′ − S∞) (4.18)

where ξ = 1 for bosons and −1 for fermions and we will omit “static” in the

following for simplicity. Note that this means that Sq − S∞ is an eigenfunction of

the 2D Fourier transform functional. Another important quantity we need is:

Definition 4.3. Reduced three-body guiding-center structure factor for the un-

perturbed ground state:

S̄q1,q2
=
∑
i ̸=j ̸=k

〈
ρ̂iq1 ρ̂

j
q2 ρ̂

k
−q1−q2

〉
0
=
∑
i ̸=j ̸=k

〈
eiq1aR̂

a
i eiq2aR̂

a
j e−i(q1a+q2a)R̂a

k

〉
0 (4.19)

This quantity is defined by guiding center density operators so we call it “reduced”.

This definition will not influence the physics but only simplify the derivations. It

also has the self-duality property because of its translationally invariant nature.

4.4 Analytic results of the graviton gap

In this section, we will show how to derive the exact expression of the energy

of graviton modes with respect to two-body and three-body model Hamiltonians,

which will help with rigorously determining whether a graviton mode belongs to

some specific CHS, and we will focus on the intuition behind each step while trying

to keep the mathematical rigor. It is worth noting that although using LEC offers

a very simple way of determining if the graviton mode belongs to the null space of

some model Hamiltonian, it only applies to the cases where the root configurations

are easy to find, and fundamentally the LEC scheme is only “proven” numerically

[204, 205].

4.4.1 Assumptions

Firstly let us focus on all the physical assumptions we make, some of which can

simplify the question and some of them are necessary to the discussion:
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Assumption 1 (Rotational invariance) The angular momentum quantum num-

bers are good quantum numbers and the interactions only have radial components.

This restricts the geometry to the disk or the sphere, and the single-particle wave

functions are given by the generalized Laguerre polynomials after picking a sym-

metric gauge.

Assumption 2 (Long-wavelength limit) The momentum of the graviton mode

should be close to 0.

This condition is crucial in the whole derivation and directly related to the validity

of the next assumption. If somehow we can apply the conclusion to the modes out

of this domain, we expect to get the mean value of the energy of all the modes

coupling to the density of the ground state, which will not be related to graviton

modes anymore.

Assumption 3 (Single-mode approximation) The graviton mode wave func-

tion can be constructed by the regularized density operator acting on the ground

state.

The single-mode approximation is exact only in the long-wavelength limit because

the corresponding graviton mode will saturate the oscillator-strength sum rule.

Normally a hidden condition with this assumption is that the ground state should

be homogeneous and isotropic, which is naturally fulfilled in the FQH phases we

discuss.

Assumption 4 (Thermodynamic limit) The particle number in the system is

considered as infinity.

This assumption can be weakened as long as there is no strong edge effect or finite-

size effect present in the system. Here we just push everything such as particle

number or system size to infinity for simplicity.

Assumption 5 (Single LL) All the physical quantities will be projected to a single

LL.

This means that only the guiding center coordinates are involved in the dynam-

ics and it is also the origin of effective many-body interactions. Without loss of

generality, one can choose the LLL.
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Assumption 6 (Fermionic statistics) All the particles are fermions in the sys-

tem.

The wave functions should be anti-symmetric as a result. We assume the fermionic

case considering that strong repulsive interactions are required for stabilizing bosonic

IQH or FQH phases because of the condensation behavior near zero temperature,

which will be an unnecessary burden to the Hamiltonian. But it does not kill

off the possibility of studying graviton modes in bosonic phases (think about the

success of SMA in superfluid), which remains to be studied in the future.

Furthermore, the magnetic length lB is set to be 1. Bold symbols (e.g. qi) are used

to denote two-dimensional vectors and the scalars will be plain (e.g. qi). Also, the

Einstein summation convention is adopted in the results.

4.4.2 Three-body interactions

As explained in Chap.2, The generic three-body Hamiltonian in a single LL can be

written as:

Ĥ3bdy =

∫
d2q1d

2q2

(2π)4
Vq1,q2 ρ̂q1 ρ̂q2 ρ̂−q1−q2

−
∫
d2q1d

2q2

(2π)4
Vq1,q2(ρ̂q1+q2 ρ̂−q1−q2 + ρ̂q1 ρ̂−q1 + ρ̂q2 ρ̂−q2)

−Ne

∫
d2q1d

2q2

(2π)4
Vq1,q2 =

∑
i ̸=j ̸=k

∫
d2q1d

2q2

(2π)4
Vq1,q2 ρ̂

i
q1 ρ̂

j
q2 ρ̂

k
−q1−q2

(4.20)

where Ne denotes the number of electrons and the summation over particle indices

with i ̸= j ̸= k restricts this interaction to be strictly three-body. Then the ground

state energy should be given by:

E0 =
∑
i ̸=j ̸=k

∫
d2q1d

2q2

(2π)4
Vq1,q2⟨ψ0

∣∣ρ̂iq1 ρ̂jq2 ρ̂k−q1−q2

∣∣ψ0⟩ =
∫
d2q1d

2q2

(2π)4
Vq1,q2S̄q1,q2

(4.21)

where S̄q1,q2
denotes the reduced three-body structure factor for the unperturbed

ground state.
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Remember that the graviton mode can be described by the SMA model wave

function in the long-wavelength limit:

|ψq ⟩ =
1√
Sq

δρ̂q |ψ0 ⟩ (4.22)

where δρ̂q denotes the regularised guiding centre operator(note that we omit the

bar here). The energy of the graviton mode is given by:

δEq→0 = lim
q→0

⟨ψq|Ĥ3bdy |ψq ⟩
⟨ψq|ψq⟩

− E0 = lim
q→0

〈
ψ0

∣∣∣[δρ̂−q,
[
Ĥ3bdy, δρ̂q

]]∣∣∣ψ0

〉
2Sq

= lim
q→0

∑
i ̸=j ̸=k

∫
d2q1d

2q2

(2π)4
Vq1,q2 ×

〈
ψ0

∣∣[δρ̂−q,
[
ρ̂iq1 ρ̂

j
q2 ρ̂

k
−q1−q2 , δρ̂q

]]∣∣ψ0

〉
2Sq

(4.23)

Thus it can be regarded as exactly a special case of Eq.(4.15). Note that the

particle indices have no effect on the commutation rules of the density operators,

so for simplicity we will omit the index i, j, k and the summation symbol
∑

i ̸=j ̸=k

in the following derivations. Firstly by considering the GMP algebra:

[
ρ̂q1

, ρ̂q2

]
= 2i sin

q1 ∧ q2

2
ρ̂q1+q2

(4.24)

we can write the commutator as:[
ρ̂−q, [ρ̂q1

ρ̂q2
ρ̂−q1−q2

, ρ̂q]
]

=− 4

[
sin

(q1 + q2) ∧ q

2
sin

(q1 + q2 − q) ∧ q

2
+ sin

q2 ∧ q

2
sin

(q2 + q) ∧ q

2

+ sin
q1 ∧ q

2
sin

(q1 + q) ∧ q

2

]
S̄q1,q2

− 4 sin
q ∧ (q1 + q2)

2

[
sin

q1 ∧ q

2
(S̄q1−q,q2

+ S̄q1+q,q2
)

+ sin
q2 ∧ q

2
(S̄q1,q2−q + S̄q1,q2+q)

]
− 4 sin

q2 ∧ q

2
sin

q1 ∧ q

2

(
S̄q1−q,q2+q + S̄q1+q,q2−q

)
≡S1 + S2 + S3

(4.25)
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which can be expanded as:

S1 =− 2[(q1 ∧ q) · (q2 ∧ q) + (q2 ∧ q)2 + (q1 ∧ q)2 +O(q3)]S̄q1,q2

S2 =
[
(q1 ∧ q)2 + (q1 ∧ q) · (q2 ∧ q) +O(q3)

]
(S̄q1−q,q2

+ S̄q1+q,q2
)

+ [(q2 ∧ q)2 + (q1 ∧ q) · (q2 ∧ q) +O(q3)](S̄q1,q2−q + S̄q1,q2+q)

S3 =− [(q1 ∧ q) · (q2 ∧ q) +O(q3)](S̄q1−q,q2+q + S̄q1+q,q2−q)

(4.26)

Then we expand the structure factors to the second order, which gives:

S̄q1−q,q2
+ S̄q1+q,q2

=2S̄q1,q2
+

(
qx

∂

∂q1x
+ qy

∂

∂q1y

)2

S̄q1,q2
+O(q3) ∼ [2 + (q ·∇1)

2]S̄q1,q2

(4.27)

and

S̄q1,q2−q + S̄q1,q2+q

=2S̄q1,q2
+

(
qx

∂

∂q2x

+ qy

∂

∂q2y

)2

S̄q1,q2
+O(q3) ∼ [2 + (q ·∇2)

2]S̄q1,q2

(4.28)

and

S̄q1−q,q2+q + S̄q1+q,q2−q

=2S̄q1,q2
+

(
qx

∂

∂q1x

+ qy

∂

∂q1y

− qx

∂

∂q2x

− qy

∂

∂q2y

)2

S̄q1,q2
+O(q3)

∼
[
2 + (q · (∇1 −∇2))

2
]
S̄q1,q2

(4.29)

where we use ∇i ≡ ∂
∂qix

êx +
∂

∂qix
êy. By taking the three equations above back to

Eq.(4.25), we have:

⟨ψ0|
[
ρ̂−q, [ρ̂q1

ρ̂q2
δρ̂−q1−q2

, δρ̂q]
]
|ψ0⟩

=[(q1 ∧ q)(q ·∇1) + (q2 ∧ q)(q ·∇2))]
2S̄q1,q2

+O(q5)
(4.30)

In the last section, we have introduced the self-duality of the two-body structure

factor, so we can expand them with the generalized Laguerre polynomials based

on the following lemma:

Lemma 4.1. Let the operators F̂ 1 and F̂−1 denote the two-dimensional Fourier

transform and its inverse transform, then the eigenvalue equation for operator F̂ 1
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is given by [332]:

F̂ 1 [Ψsm (q)] = (−1)s(i)mΨsm (p) (4.31)

with the two-dimensional Laguerre–Gaussian (LG) function of vector q defined by:

Ψsm(q) =

[
2(s!)

(s+m)!

]1/2
qmL(m)

s

(
|q|2
)
exp

(
−1

2
|q|2
)

(4.32)

Now we will prove that the three-body structure factor also has the same property:

Proposition 4.1. The reduced structure factor S̄q̃1,q̃2
can be expanded with gener-

alized Laguerre-Gaussian functions as:

S̄q̃1,q̃2
=
∑

i;n1n2

dn1n2
i

√
n1! ·n2!

(n1 + i)! · (n2 − i)!

(
q̃1
q̃2

)i

× L(i)
n1

(
Q̃1

2

)
L(−i)
n2

(
Q̃2

2

)
e−

1
4(Q̃1+Q̃2)

=

∫
d2p̃1d

2p̃2

4× 4π2
e−

i
2
(q̃1×p̃1+q̃2×p̃2)S̄p̃1,p̃2

(4.33)

and the Fourier transform can be written as:

S̄p̃1,p̃2
=
∑

i;n1n2

(−1)n1+n2dn1n2
i

√
n1! ·n2!

(n1 + i)! · (n2 − i)!

(
p̃1

p̃2

)i

× L(i)
n1

(
P̃1

2

)
L(−i)
n2

(
P̃2

2

)
e−

1
4(P̃1+P̃2)

(4.34)

where we have defined:

Q̃1 = q̃2
1 = |q̃1|2, Q̃2 = q̃2

2 = |q̃2|2, P̃1 = p̃2
1 = |p̃1|2, P̃2 = p̃2

2 = |p̃2|2 (4.35)

Proof. This is equivalent to proving the self-duality of the three-body structure

factor. For any three particles indexed by s, j, and k in the system, the conclu-

sions in Eq.(2.64) are always true. So by considering the definition of the reduced

structure factor, we can rewrite it as:

S̄q1,q2
=
∑

s ̸=j ̸=k

N sjk ·
∑
n1,n2

∑
n′
1,n

′
2

α∗n1n2αn′
1n

′
2

(〈
n1, n2

∣∣∣eiq̃saR̂a
sjeiq̃jaR̂

a
sj,k

∣∣∣n′
1, n

′
2

〉)
sjk

(4.36)



Chapter 4. Graviton Modes in FQH Liquids 95

where αn1n2 is defined in Definition.2.63 the tensor N sjk describes the overall factor

related to all the other particles:

N sjk = N (R1, · · · ,Rs−1,Rs+1, · · · ,Rj−1,Rj+1, · · · ,Rk−1,Rk+1, · · · ,RN)

(4.37)

Thus by defining:

dn1n2
i =

∑
s ̸=j ̸=k

N sjkα∗n1n2αn′
1n

′
2 =

∑
s ̸=j ̸=k

N sjkα∗n1,n2αn1+i,n2−i (4.38)

we can write the reduced structure factor as:

S̄q̃1,q̃2
=
∑

i;n1n2

dn1n2
i

√
n1! ·n2!

(n1 + i)! · (n2 − i)!

(
q̃1
q̃2

)i

× L(i)
n1

(
Q̃1

2

)
L(−i)
n2

(
Q̃2

2

)
e−

1
4(Q̃1+Q̃2)

(4.39)

Note that n′
1 and n′

2 have been represented by i ≡ ∆n1 here. Then according

to Lemma.4.1, generalized Laguerre polynomials are the eigenfunctions of two-

dimensional Fourier transform, so Eq.(4.34) obviously holds, which gives the self-

duality of S̄q1,q2
.

As we can see, the problem with the definition above is that we need to do lots

of numerical calculations to get the values of dn1n2
i . However, the ratio between

the coefficients dn1n2
i with different i only depends on α∗n1,n2 and αn1+i,n2−i, which

can be calculated easily and the results are shown in Table.F.1. So one can take a

specific dn1n2
i as a reference to efficiently get the other expansion coefficients with

the same n1 and n2 but different i.

Definition 4.4. The reduced-structure-factor expansion coefficient of the reference

d̄n1n2 ≡
∫
d2q̃1d

2q̃2

(2π)4
S̄q̃1,q̃2

L(0)
n1

(
Q̃1

2

)
L(0)
n2

(
Q̃2

2

)
e−

1
4(Q̃1+Q̃2) = dn1n2

0

∝αn1,n2 =
∑
n1,n2

⟨n1, n2|ψ3⟩
(4.40)

Corollary 4.2. Any expansion coefficient can also be expressed as

dn1n2
i =

αn1+i,n2−i

αn1,n2
· d̄n1n2 (4.41)
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Similarly the rotationally-invariant interaction VQ̃1,Q̃2
can also be expanded with

the Laguerre-Gaussian polynomials (or Haldane pseudopotentials) as explained in

Chap.2:

Vq̃1,q̃2
=
∑
m1m2

cm1m2L(0)
m1

(
Q̃1

2

)
L(0)
m2

(
Q̃2

2

)
e−

1
4(Q̃1+Q̃2) (4.42)

Note that the form of the interactions can be freely chosen as long as it obeys the

basic assumptions in the last section. In this thesis, we will not take the more

complicated forms involving generalized Laguerre polynomials into account.

Then by differentiating the exponential functions, we have:

(q ·∇1)
2e−

i
2
(q̃1∧p̃1+q̃2∧p̃2)

=

[
qx(

∂q̃1x
∂q1x

∂

∂q̃1x
+
∂q̃2x
∂q1x

∂

∂q̃2x
) + qy(

∂q̃1y
∂q1y

∂

∂q̃1y
+
∂q̃2y
∂q1y

∂

∂q̃2y
)

]2
e−

i
2
(q̃1∧p̃1+q̃2∧p̃2)

=−

[
q

2
∧ (

1√
2
p̃1 +

√
3√
2
p̃2)

]2
e−

i
2
(q̃1∧p̃1+q̃2∧p̃2)

(4.43)

and:

(q ·∇2)
2e−

i
2
(q̃1∧p̃1+q̃2∧p̃2) = −

[
q

2
∧ (− 1√

2
p̃1 +

√
3√
2
p̃2)

]2
e−

i
2
(q̃1∧p̃1+q̃2∧p̃2) (4.44)

and also:

(q ·∇1)(q ·∇2)e
− i

2
(q̃1∧p̃1+q̃2∧p̃2)

=−

[
q

2
∧ (

1√
2
p̃1 +

√
3√
2
p̃2)

][
q

2
∧ (− 1√

2
p̃1 +

√
3√
2
p̃2)

]
e−

i
2
(q̃1∧p̃1+q̃2∧p̃2)

(4.45)

Remember that in the long-wavelength limit, the wave number q → 0, and we have

the limit of the structure factor as:

lim
|q|→0

Sq = η · q4 =
Neκ

2
· q4 (4.46)
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where κ is no greater than the Hall viscosity of the ground state |ψ0⟩ [333]. Thus
the graviton mode gap turns out to be:

δẼq→0 =− 1

6Sq

∫
d2q̃1d

2q̃2
(2π)4

Vq̃1,q̃2

∫
d2p̃1d

2p̃2

24 × 4π2
e−

i
2
(q̃1∧p̃1+q̃2∧p̃2)S̄p̃1,p̃2

×

{[(
1√
2
q̃1 +

1√
6
q̃2

)
∧ q

][
(
1√
2
p̃1 +

√
3√
2
p̃2) ∧ q

]

+

[(
− 1√

2
q̃1 +

1√
6
q̃2

)
∧ q

][
(− 1√

2
p̃1 +

√
3√
2
p̃2) ∧ q

]}2

(4.47)

We can set θq =
π
2
without losing any generality and get:

δẼq =− 1

6η

∫
2|q̃1|d|q̃1| × 2|q̃2|d|q̃2|

4× (2π)4
Vq̃1,q̃2

∫
2|p̃1|d|p̃1| × 2|p̃2|d|p̃2|

4× 24 × 4π2

×
∑
∆n1

∣∣∣S̄(∆n1)
p̃1,p̃2

∣∣∣Θ(∆n1) (q̃1, q̃2, p̃1, p̃2)
(4.48)

where
∣∣∣S̄(∆n1)

p̃1,p̃2

∣∣∣ denotes the radial part of each term in the structure factor expan-

sion. Moreover the angular integral is defined by

Θ(∆n1) (q̃1, q̃2, p̃1, p̃2) =

∫∫∫∫ π

−π

dθq̃1dθq̃2dθp̃1dθp̃2e
i∆n1(θp̃1−θp̃2 )

× e−
i
2
[|q̃1||p̃1| sin(θq̃1−θp̃1 )+|q̃2||p̃2| sin(θq̃2−θp̃2 )]

× [|q̃1||p̃1| cos(θq̃1) cos(θp̃1) + |q̃2||p̃2| cos(θq̃2) cos(θp̃2)]2

(4.49)

The integral with sin function in the exponential function reminds us of the Bessel

function: ∫ π

−π

∫ π

−π

dθ1dθ2e
i[x sin(θ1−θ2)−α(θ1−θ2)+βθ2] = 4π2Jα(x)δ(β) (4.50)

This can save us from dealing with infinite terms in the Laguerre-Gaussian expan-

sion as follows. The integrand in Θ(∆n1) (q̃1, q̃2, p̃1, p̃2) can be reorganized:[
e−

i
2
[|q̃1||p̃1| sin(θq̃1−θp̃1 )+|q̃2||p̃2| sin(θq̃2−θp̃2 )]|q̃i||p̃i||q̃j ||p̃j |

]
× ei∆n1(θp̃1−θp̃2 ) cos(θq̃i) cos(θp̃i) cos(θq̃j ) cos(θp̃j )

=
[· · · ]
24

(
eiθq̃i + e−iθq̃i

)(
e
iθq̃j + e

−iθq̃j
) [
ei∆n1θp̃1e−i∆n1θp̃2

(
eiθp̃i + e−iθp̃i

)(
e
iθp̃j + e

−iθp̃j
)]

(4.51)

where i, j ∈ {1, 2}. Thus according to Theorem.4.50, when i = j, ∆n must vanish

for getting a non-zero term in Θ(∆n1) (q̃1, q̃2, p̃1, p̃2) otherwise integrating either θq̃1
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or θq̃2 will give a zero. As for i ̸= j, only when

1±∆n1 = ±1 (4.52)

can we have a non-zero term in Θ(∆n1) (q̃1, q̃2, p̃1, p̃2). Hence ∆n1 can only be ±2

or 0. In short, we have made sure that:

Proposition 4.2. The domain of the quantum number differences is given by

∆n1 = −∆n2 ∈ {±2, 0} (4.53)

Then we can discuss each case one by one:

· When i = j and ∆n1 = 0

Based on Theorem.4.50, when i = j, Θ(0) (q̃1, q̃2, p̃1, p̃2) can be written as:

1

24

∫∫∫∫ π

−π

dθq̃1dθq̃2dθp̃1dθp̃2e
− i

2
[|q̃1||p̃1| sin(θq̃1−θp̃1 )+|q̃2||p̃2| sin(θq̃2−θp̃2 )]

× Q̃iP̃i

[
4 + ei2(θq̃i−θp̃i ) + e−i2(θq̃i−θp̃i )

]
=4π4Q̃iP̃i ×

[
J0

(
|q̃1||p̃1|

2

)
J0

(
|q̃2||p̃2|

2

)
+

1

2
J2

(
|q̃i||p̃i|

2

)
J0

(
|q̃3−i||p̃3−i|

2

)]
(4.54)

Finally, we can transform the Bessel functions to the generalized Laguerre polyno-

mials based on Eq.(2.35):

Θ(0)(Q̃1, Q̃2, P̃1, P̃2)

=4× 4π4e−
1
4(Q̃1+Q̃2+P̃1+P̃2)

∞∑
a,b=0

(−1)a+b

[
Q̃1P̃1 + Q̃2P̃2

2

× L(0)
a

(
Q̃1

2

)
L(0)
a

(
P̃1

2

)
L
(0)
b

(
Q̃2

2

)
L
(0)
b

(
P̃2

2

)

+
Q̃1P̃1

a+ 1
L(1)
a

(
Q̃1

2

)
L(1)
a

(
P̃1

2

)
L
(0)
b

(
Q̃2

2

)
L
(0)
b

(
P̃2

2

)

×+
Q̃2P̃2

b+ 1
L(0)
a

(
Q̃1

2

)
L(0)
a

(
P̃1

2

)
L
(1)
b

(
Q̃2

2

)
L
(1)
b

(
P̃2

2

)]
(4.55)
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Now we can calculate the integral by considering the completeness and orthogo-

nality of the generalized Laguerre polynomials [334], which can help derive two

quantities that we need:

Definition 4.5 (Linear combination of Kronecker-delta symbols).

∆ij ≡
∫ ∞

0

xe−xL
(0)
i (x)L

(1)
j (x)dx =

∫ ∞

0

xe−x
[
L
(1)
i (x)− L

(1)
i−1(x)

]
L
(1)
j (x)dx

=(i+ 1)δi,j − iδi−1,j

(4.56)

and:

∆∗
ij ≡

∫ ∞

0

xe−xL
(0)
i (x)L

(0)
j (x)dx

=

∫ ∞

0

xe−x
[
L
(1)
i (x)− L

(1)
i−1(x)

] [
L
(1)
j (x)− L

(1)
j−1(x)

]
dx

=(i+ 1)δi,j − (i+ 1)δi,j−1 − iδi−1,j + iδi−1,j−1

(4.57)

Furthermore for simpliity we denote the constant factor in S̄p̃1,p̃2
as

ωn1n2
i =

√
n1! ·n2!

(n1 + i)! · (n2 − i)!
(4.58)

Now we are all set to get the final result. By using the orthogonality of the

generalized Laguerre polynomials, we can see that the contribution to the energy

gap turns out to be the combination of delta functions. So we can expect that the

only input of the final expression will be cm1m2 and dn1n2
0 and try to absorb all the

other coefficients into an independent quantity:

δẼ
(0)
q =− 1

26 × 3ηπ2

∑
m1m2

∑
n1n2

cm1m2dn1n2
0

∑
a,b

(−1)m1+m2+a+b

(
2

a+ 1
∆n1a∆m1aδn2,bδm2,b +∆∗

n1a∆
∗
m1aδn2,bδm2,b

+
2

b+ 1
∆n2b∆m2bδn1aδm1a +∆∗

n2,b∆
∗
m2,bδn1aδm1a

)
≡− 1

26 × 3ηπ2
Γ0
m1m2n1n2

cm1m2dn1n2
0

(4.59)
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By considering Definition.4.5, we have:

∑
a,b

(−1)m1+m2+a+b 1

a+ 1
∆n1a∆m1aδn2,bδm2,b

−m1δm1−1,aδn1,a −m1δm1−1,aδn1−1,a](−1)m2δn2,m2

=[(−1)2n1(n1 + 1)δn1,m1 + (−1)2n1−1n1δn1−1,m1

− (−1)2n1+1(n1 + 1)δm1−1,n1 − (−1)2n1n1δm1,n1 ]δn2,m2

=[δn1,m1 + (n1 + 1)δn1,m1−1 − n1δn1,m1+1]δn2,m2

(4.60)

The symmetric operation of m1,m2 ↔ n1, n2 and a ↔ b gives all the other terms.

Then by combining them, one can easily get the independent quantity for the case

with i = j and ∆n1 = 0:

Proposition 4.3. The tensor describing the contribution to δEq from the diagonal

terms is given by

Γ0
m1m2n1n2

=2(n21 + n22 + n1 + n2 + 2)δn1,m1δn2,m2

− n1(n1 − 1)δn1,m1+2δn2,m2(n1 + 1)(n1 + 2)δn1,m1−2δn2,m2

− n2(n2 − 1)δn1,m1δn2,m2+2 − (n2 + 1)(n2 + 2)δn1,m1δn2,m2−2

(4.61)

· When i ̸= j and ∆n1 = 0

First, we need a special property of the Bessel functions (of the first kind) with

integer indices [334]:

Lemma 4.3 (Index Parity of Bessel functions).

J−n(x) = (−1)nJn(x), n ∈ N (4.62)

which means that these Bessel functions are “odd” with respect to their indices.

Thus it is not surprising to have the following conclusion:

Proposition 4.4. There is no contribution to δEq from the terms with i ̸= j and

∆n1 = 0.
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Proof. The angular integral can be written as:∫∫∫∫ π

−π
dθq̃1dθq̃2dθp̃1dθp̃2e

− i
2
[|q̃1||p̃1| sin(θq̃1−θp̃1 )+|q̃2||p̃2| sin(θq̃2−θp̃2 )]

× 1

24
|q̃1||p̃1||q̃2||p̃2|

(
eiθq̃1 + e−iθq̃1

)(
eiθp̃1 + e−iθp̃1

)(
eiθq̃2 + e−iθq̃2

)(
eiθp̃2 + e−iθp̃2

)
=π4|q̃1||p̃1||q̃2||p̃2| ×

[
J1

(
|q̃1||p̃1|

2

)
J1

(
|q̃2||p̃2|

2

)
+ J1

(
|q̃1||p̃1|

2

)
J−1

(
|q̃2||p̃2|

2

)
+J−1

(
|q̃1||p̃1|

2

)
J1

(
|q̃2||p̃2|

2

)
+ J−1

(
|q̃1||p̃1|

2

)
J−1

(
|q̃2||p̃2|

2

)]
= 0

(4.63)

· When i ̸= j and ∆n1 = ±2

By observing the integral one can easily find that the case with ∆n1 = −2 and the

one with ∆n1 = 2 are completely symmetric. So after one of them is solved, the

other one can be derived by exchanging the indices. Without losing generality, we

can calculate the angular integral Θ(−2)(Q̃1, Q̃2, P̃1, P̃2) with i ̸= j and ∆n1 = −2

first, given by:∫∫∫∫ π

−π

dθq̃1dθq̃2dθp̃1dθp̃2e
− i

2
[|q̃1||p̃1| sin(θq̃1−θp̃1 )+|q̃2||p̃2| sin(θq̃2−θp̃2 )] × 1

24
× e−2i(θp̃1−θp̃2 )

× 2|q̃1||p̃1||q̃2||p̃2|
(
eiθq̃1 + e−iθq̃1

) (
eiθp̃1 + e−iθp̃1

) (
eiθq̃2 + e−iθq̃2

) (
eiθp̃2 + e−iθp̃2

)
=2π4 × |q̃1||p̃1||q̃2||p̃2| × J1

(
|q̃1||p̃1|

2

)
J1

(
|q̃2||p̃2|

2

)
(4.64)

Now we introduce another formula to be used:

Lemma 4.4 (Generalized Laguerre polynomial integral).

∫ ∞

0

dP̃1

2

[
L(1)
a

(
P̃1

2

)
L(−2)
n1

(
P̃1

2

)
e−

1
2
P̃1

]
= δn1,0 − δn1,1 + δn1−2,a − δn1−1,a (4.65)

which helps to calculate the contribution to the graviton mode gap in this case by:

δẼ
(−2)
q =− 1

6η

∫
dQ̃1dQ̃2

4× (2π)4

∫
dP̃1dP̃2

4× 24 × 4π2
Θ(−2)(Q̃1, Q̃2, P̃1, P̃2) ·VQ̃1,Q̃2

·
∣∣S̄p̃1,p̃2

∣∣︸ ︷︷ ︸
Expanded by generalized L-G polynomials

(4.66)

where these three functions can all be expanded by generalized Laguerre-Gaussian

polynomials. Then we can combine the equations above and get the contribution
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to the energy as:

− 1

26 × 3ηπ2

∞∑
a=0

∞∑
m1,m2=0

∞∑
b=0

∞∑
n1,n2=0

cm1m2dn1n2
−2 (−1)a+b+n1+n2ωn1n2

−2

1

a+ 1

1

b+ 1

× [(m1 + 1)δm1,a −m1δm−1,a]× [(m2 + 1)δm2,b −m2δm2−1,b]

× [δn1,0 − δn1,1 + δn1−2,a − δn1−1,a]× [(n2 + 1)(n2 + 2)(δn2,b − δn2+1,b)]

=− 1

26 × 3ηπ2
Γ−
m1m2n1n2

cm1m2dn1n2
−2

(4.67)

where we have:

Γ−
m1m2n1n2

= ωn1n2
−2 × (n2 + 1)(n2 + 2) (δm2,n2 − δm2,n2+2)× (δm1,n1 − δm1,n1−2)

(4.68)

Then for ∆n1 = +2 everything is totally symmetric by substituting n1 ↔ n2 and

m1 ↔ m2. So we can directly write down the result:

Γ+
m1m2n1n2

=ωn1n2
+2 × (n1 + 1)(n1 + 2) (δm1,n1 − δm1,n1+2)× (δm2,n2 − δm2,n2−2)

(4.69)

Thus by defining:

Definition 4.6 (Characteristic tensor).

Γ̃3bdy
m1m2n1n2

= C ×
(
Γ0
m1m2n1n2

+
αn1+2,n2−2

αn1,n2

× Γ+
m1m2n1n2

+
αn1−2,n2+2

αn1,n2

× Γ−
m1m2n1n2

)
(4.70)

where the constant coefficient C = − 1
26×3ηπ2 .

we can get the graviton mode gap with respect to the three-body interaction given

by

δẼq→0 = Γ̃3bdy
m1m2n1n2

cm1m2 d̄n1n2 (4.71)

From the last three subsections, we know that the graviton mode gap can be written

as:

δẼq→0 = C ×
(
Γ0
m1m2n1n2

cm1m2dn1n2
0 + Γ−

m1m2n1n2
cm1m2dn1n2

−2 + Γ+
m1m2n1n2

cm1m2dn1n2
2

)
(4.72)
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Figure 4.2: Illustration of the characteristic tensor Γ̃. This universal
tensor can assemble the coefficients from the model Hamiltonian and the struc-
ture factor of the ground state to give the energy of the corresponding graviton
mode.

Then according to Corollary.4.2, we can use d̄n1n2 to express all the expansion

coefficients dn1n2
∆n1

:

δẼq→0 =

[
C ×

(
Γ0
m1m2n1n2

+
αn1+2,n2−2

αn1,n2

× Γ+
m1m2n1n2

+
αn1−2,n2+2

αn1,n2

× Γ−
m1m2n1n2

)]
× cm1m2 d̄n1n2

=
(
Γ̃0
m1m2n1n2

+ Γ̃+
m1m2n1n2

+ Γ̃−
m1m2n1n2

)
cm1m2 d̄n1n2

≡Γ̃3bdy
m1m2n1n2

cm1m2 d̄n1n2

(4.73)

If the Hamiltonian is defined with a different coefficient in the first place because of

different Fourier transform conventions, then the constant coefficient C here might

also change. But this will not change the gaplessness of a state and the characteris-

tic tensor Γ̃3bdy
m1m2n1n2

is always well defined so all that one needs to calculate δẼq→0
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is to input the corresponding cm1m2 and d̄n1n2 as shown in Fig.4.2. The most pow-

erful advantage of this formalism is that the structure of the characteristic tensor

Γ̃3bdy
m1m2n1n2

allows us to predict the graviton mode energy of some states with respect

to a Hamiltonian without knowing the exact values of cm1m2 and d̄n1n2 . Actually,

we only need to know whether these coefficients vanish or not, as explained later.

Also, it is definitely possible to generalize this formalism to the interaction with

more particles, and we expect to see a rank-2n characteristic tensor for a n-body

effective Hamiltonian, which can be studied in the future.

4.4.3 Two-body interactions

Here we will show the characteristic matrix formalism of the graviton mode gap

with respect to two-body interactions, which is basically a simplified version of the

three-body case. The FQH states with the two-body model Hamiltonian are the

Laughlin states, which are not very interesting (considering they are Abelian) but

the results can still provide us some insights about this formalism.

The generic two-body Hamiltonian in a single LL as introduced in Chap.2 can be

written as:

Ĥ2bdy =

∫
d2q

(2π)2
Vq
∑
i ̸=j

eiqa(R̂
a
i −R̂a

j ) =

∫
d2q

(2π)2
Vqρ̂qρ̂−q −Ne

∫
d2q

(2π)2
Vq

where Ne is the number of electrons and the form factor (which is a Gaussian factor

in the lowest LL) has been absorbed into Vq. We will denote the ground state of

Ĥ2bdy as |ψ0⟩ with the energy E0. Thus to derive the energy of the graviton mode

given by the SMA wave function:

|ψq⟩ =
1√
Sq

· δ ˆ̄ρq|ψ0⟩ (4.74)

with respect to Ĥ2bdy, we only need to calculate:

δẼq→0 = lim
q→0

〈
ψ0

∣∣∣[δρ−q,
[
Ĥ2bdy, δρq

]]∣∣∣ψ0

〉
2Sq

= lim
q→0

1

2Sq

∫
d2q′

(2π)2
Vq′

[
2 sin

(
1

2
q′ ∧ q

)]2
× (q ·∇′)2sq′)

(4.75)
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where the higher-order terms have been dropped. This is a commonly-seen result

that can be found in the literature about neutral modes because it only involves the

GMP algebra, and normally people will stop here because it seems that nothing

meaningful can be further derived without the input of potential and structure

factor. However, we will show that based on the assumptions we have made, it is

possible to get a compact formula of δẼq→0, which can give us lots of information

but requires no numerical input at all [333].

By defining q1 = |q′|2 and q2 = |q′′|2, the direct transformation of Vq′ and sq′′ is

because both of them are the function of q1 and q2, expanded as:

Vq1
=
∑
m

cmLm(q1)e
− q1

2 , sq2
=
∑
n

dnLn(q2)e
− q2

2 (4.76)

where m and n are both odd and positive integers because of the fermionic statis-

tics.

Thus the graviton mode gap with respect to the two-body interaction is given by:

δẼq→0 =
1

28ηπ
Γ2bdy
mn cmdn (4.77)

where the characteristic matrix is given by [333]:

Γ2bdy
mn = (−1)m ·

[
2(m2 +m+ 1)δm,n − (m+ 1)(m+ 2)δm,n−2 −m(m− 1)δm,n+2

]
(4.78)

Apparently, the calculation for two-body interactions is relatively smooth because

it reminds us of many details that can be found in the usual calculations with

symmetric gauge, and there are few new concepts involved, unlike in the last section

where things can get quite tricky with lots of subtleties arising with three-body

interactions.

4.5 Model Hamiltonian of graviton modes

The analytic result we just derived paves the way for calculating the energy of

graviton modes with respect to any interaction that can be written as a linear

combination of two-body and three-body pseudopotentials. The direct application
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is to construct the model Hamiltonians for the gravitons (note that they are not

the unique highest-density zero modes of these model-Hamiltonians but live within

the corresponding null space), as shown in the example of the gravitons of the

Laughlin state at ν = 1/3, the Moore-Read Pfaffian state at ν = 1/4 and the

Gaffnian state at ν = 2/5 in this section, which also leads to the insight toward

the intrinsic hierarchical structure of the CHSs within a single LL. Note that for

some of the FQH states, one can also find the model Hamiltonian of the graviton

mode by looking into the wave function. For example, the wave function for the

graviton of the Laughlin state at ν = 1/5 is the Laughlin-1/3 graviton × a 1/2

bosonic Laughlin state, which is within the null-space of two-body pseudopotential

V̂ 2bdy
1 [335].

4.5.1 Laughlin-1/3 graviton mode

The graviton mode of the Laughlin state at ν = 1/3 is the most special one among

all the Laughlin states, because it is out of the largest CHS defined by two-body

pseudopotentials, i.e. H1 defined by V̂ 2bdy
1 , which contains the graviton modes of

all the other Laughlin states. Now by using the three-body characteristic tensor

formalism, the behavior of the Laughlin-1/3 graviton mode can be analytically

discussed, which was suggested to live within the Haffnian CHS (defined below) by

numerics. From Eq.(4.40) and Eq.(4.38), we can decompose d̄n1,n2 as follows:

d̄n1,n2 =

kn1+n2∑
i=1

λn1+n2,iA
n1,n2

i (4.79)

where kn1+n2 denotes the degeneracy of three-body pseudopotentials (or the highest-

weight three-body eigenstates of L̂2) with total relative angular momentum n1+n2;

λn1+n2,i depends on the ground state wave function, and An1,n2

i are well-defined as

shown in Ref.[203]. When there is no degeneracy in the highest weight state wave

function (i.e. kn1+n2 = 1, which is true for n1 + n2 < 9), d̄n1,n2 can be considered

to be proportional to An1,n2

1 = |αn1,n2 |2. Thus from the ground state energy in
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Eq.(4.21), considering that d1 = 0 gives d1,n2 = 0 for this state, we can write down:

λ1+n2,1 = 0, for n2 = 2, 4, 5, 6, 7

⇒ λa,1 = 0, for a = 3, 5, 6, 7, 8

⇒ d̄n1n2 = 0, for n1 + n2 = 3, 5, 6, 7, 8

(4.80)

We have thus proved that the graviton mode of the Laughlin-1/3 state lives in the

null space of the following three-body Hamiltonian:

Ĥ3bdy =
6∑

i=3

c̃iV̂
3bdy
i (4.81)

where c̃4 = 0 and c̃i > 0 otherwise. In other words, the graviton mode is in

the CHS HHaffnian, the null space of the Haffnian model Hamiltonian ĤHaffnian =

V̂ 3bdy
3 + V̂ 3bdy

5 + V̂ 3bdy
6 (the ground state of which is the Haffnian state) as Fig.4.4

shows. This Hamiltonian provides us with non-vanishing coefficients of cm1,m2 with

m1 +m2 = 3, 5 and 6. Thus based on Eq.(4.73), the energy of the graviton mode

of the Laughlin-1/3 state is given by:

δẼq =Γ̃3bdy
m1m2n1n2

cm1m2 d̄n1n2 = 0 (4.82)

where the algebraic structure of Γ̃3bdy
m1m2n1n2

ensures that only the coefficients d̄n1n2

with n1 + n2 ≤ 8 are involved.

We also illustrate the behaviors of d̄n1,n2 in Fig.4.3, all the bold coefficients are zero

given by the ground state energy of the corresponding model Hamiltonian denoted

by different colors:

E0 = δm1,n1δm2,n2c
m1m2dn1n2

0 (4.83)

Meanwhile, the fermionic statistics ensure that all the gray coefficients have to

vanish. Although the black coefficients are generally not zero, none are involved

in the expression. Thus one can rigorously prove that the graviton mode energy

of the Laughlin-1/3 state with respect to the Haffnian Hamiltonian is zero, i.e.,

the Haffnian Hamiltonian is the model Hamiltonian of the Laughlin-1/3 graviton

mode.
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(                                 )
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Figure 4.3: Structure of the d̄n1n2 coefficients of the Laughlin-1/3 state.
Here, gray coefficients vanish due to the fermionic statistics. Bold coefficients
are zero because of the vanishing ground state energy (different colors denote
contributions from different three-body model Hamiltonians). Black coefficients
are unknown and not necessarily zero. Note that here we omit the bars over the
d̄n1n2 coefficients for simplicity.

4.5.2 Moore-Read graviton mode

Based on the same idea, only two coefficients d̄30 and d̄12 of the Moore-Read state

vanish as Eq.(4.83), so the energy gap of the corresponding graviton mode with

respect to the Hamiltonian ĤMR = V̂ 3bdy
3 is given by:

δẼq =Γ̃3bdy
m1m2n1n2

cm1m2 d̄n1n2

=c30(Γ̃3bdy
3032 d̄

32 + Γ̃3bdy
3050 d̄

50) + c12(Γ̃3bdy
1232 d̄

32 + Γ̃3bdy
1214 d̄

14)

=− 1

28 × 3ηπ2
×
[
c30
(
8d̄32 − 16d̄50

)
+c12

(
−24d̄32 − 16d̄14

)]
∝λ5,1 ×

(
c30 + 3c12

)
(4.84)

where λ5,1 is the coefficient of the structure factor of the states with the total angu-

lar momentum quantum number n1+n2 = 5 as in Eq.(4.79), which is proportional

to the expectation value of the Moore-Read state with respect to V̂ 3bdy
5 and we
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have used the ratio between the coefficients given in Ref.[203]:

α50 : α32 : α14 = −
√
5

4
:

1

2
√
2
:
3

4
(4.85)

Thus the graviton mode energy of the Moore-Read state can be determined by

tuning c30 and c12. Furthermore, similar to the Laughlin-1/3 state, the graviton

mode of the Moore-Read state will be living within the CHS determined by four-

body pseudopotentials, which will not be discussed in detail here.

4.5.3 Gaffnian graviton mode

The case of the Gaffnian state is unsurprisingly a similar case of the Moore-Read

state, as the coefficients d̄30, d̄12, d̄50, d̄32 and d̄14 vanish ensured by its model

Hamiltonian ĤGaffnian = V̂ 3bdy
3 + V̂ 3bdy

5 (only cm1,m2 with m1 +m2 = 3 and 5 can be

non-zero, so the coefficients dm1,m2 with the same indices have to vanish to make

the ground state energy zero as Eq.(4.83) shows). Then one can write down the

energy of the corresponding graviton mode as:

δẼq =c50(Γ̃
3bdy
5052 d̄

52 + Γ̃3bdy
5070 d̄

70) + c32(Γ̃3bdy
3234 d̄

34 + Γ̃3bdy
3252 d̄

52)

+ c14(Γ̃3bdy
1416 d̄

16 + Γ̃3bdy
1434 d̄

34)

=− 1

28 × 3ηπ2
×
[
c50(40d̄52 − 40d̄70) + c32(−16d̄34 − 80d̄52)

+c14(−40d̄16 − 24d̄34)
]

∝λ7,1 ×
(
5c50 + 2c32 + 9c14

)
(4.86)

where λ7,1 is the coefficient of the structure factor of the states with the total

angular momentum quantum number n1 + n2 = 7, which is proportional to the

expectation value of the Gaffnian state with respect to V̂ 3bdy
7 , and Ref.[203] offers

the ratio between the coefficients:

α70 : α52 : α34 : α16 = −
√
21

8
:
1

8
:

√
15

8
:
3
√
3

8
(4.87)

Thus the graviton mode energy of the Gaffnian state can be determined by tuning

c50, c32, and c14. Furthermore, there exist no c30 or c12 terms in Eq.(4.86), which

means that the graviton mode of the Gaffnian state should live in the null space
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Graviton modes

Figure 4.4: Hierarchy of the null spaces of different FQH states. The
null space of different model Hamiltonians can be organized as a hierarchical
structure in the full Hilbert space. Meanwhile, the density modes or, more pre-
cisely, the graviton modes (denoted by the stars with the corresponding colors)
constructed from model ground states live in the next larger null space. For
example, the graviton modes of the Laughlin-1/3 phase (orange star) live in the
Haffnian null space (green circle), which contains the ground state and all the
quasihole states of the Haffnian model Hamiltonian. It is efficient to verify this
structure with the characteristic tensor formalism proposed in this thesis.

of the Moore-Read model Hamiltonian V̂ 3bdy
3 , which indicates that the variational

energy of the Gaffnian graviton mode is independent of the strength of V̂ 3bdy
3 in

the Hamiltonian.

4.6 Hierarchies within conformal Hilbert spaces

The procedure we have carried out in the last section can be generalized to any

graviton modes constructed from the ground state of some well-defined CHS, which,

as defined in the last chapter, are spanned by degenerate zero-energy many-body

states of special local Hamiltonians, including the well-known generalized pseu-

dopotentials, that physically project into the angular momentum sectors of a clus-

ter of electrons [20, 189]. These states within a CHS are the ground states and

quasiholes of a particular FQH phase (though some are believed to be gapless
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CHS Model Hamiltonian

HFibonacci V̂ 4bdy
6

HMR V̂ 3bdy
3

HGaffnian λ1V̂
3bdy
3 + λ2V̂

3bdy
5

HHaffnian λ1V̂
3bdy
3 + λ2V̂

3bdy
5 + λ3V̂

3bdy
6

HLaughlin-1/(2k+1), k ≥ 1
∑k

i=1 λiV̂
2bdy
2k−1

Table 4.1: The CHSs and their model Hamiltonians. The CHSs are
defined as the null spaces of the corresponding model Hamiltonians. Here λi can
be any constant coefficient.

phases) [190, 336]. Thus like the Hilbert space of the LLL (or any other single

LL), such CHSs are built up with quasiparticles, which are emergent particles from

LL projection and strong interaction. In the LLL, the quasiparticles are simply

electrons projected into a single LL, while in other CHSs, they can be abelian or

non-abelian anyons [28, 137, 173, 179, 337, 338, 338, 339].

The definition of some commonly-used CHS is shown in Table.4.1. One can ob-

serve the relation between the CHSs just by looking at the corresponding model

Hamiltonian. Firstly for the CHS defined by model Hamiltonians with the same

number of interacting particles (e.g., 2-body for the Laughlin states, 3-body for the

Moore-Read, the Gaffnian, and the Haffnian state), they will naturally form a hi-

erarchical structure because the restriction set by the pseudopotentials are getting

stronger. Then the tricky things occur at the largest CHS H defined by n-body

model Hamiltonian because one has to find the smallest CHS defined by a n + 1-

body model Hamiltonian and meanwhile containing H as its subspace. We have

analytically proved that the CHS defined by V̂ 2bdy
1 is within the one defined by∑8

i=3 λiV̂
2bdy
i , λ4 = 0 as in Eq.(4.80). For the largest CHS HMR defined by three-

body model Hamiltonians, it is within the CHS defined by V̂ 4bdy
6 , which we will not

provide a proof for here. The same idea can also be applied to the graviton modes

because now we have figured out how to get their model Hamiltonians rigorously.

Fig.4.4 shows the complete hierarchical structure of the CHSs with the graviton

modes in the LLL.
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(a)

(b)

Density
modes

Hollow
core
modes

H
H

Figure 4.5: Spectra of the toy Hamiltonian ĤL diagonalized in differ-
ent Hilbert spaces. The case with λ = 0.05 is shown in (a) and λ = 0.95
in (b). In the left panel, one can clearly observe the transition of the low-lying
states when λ increases from 0.05 to 0.95. These states have different natures, as
explained in Fig.4.7. In the right panel, we zoom in on the spectra to the range
E ∈ [0, 0.5] and mark the states living in the Haffnian null space with green
squares and other states with blue dots. As expected, the CF picture shows
that both the density and the hollow-core modes live in the Haffnian null space.
Note that the lowest angular momentum of the hollow-core modes is Lmin = 4,
as can be seen in (b). Furthermore, the quantized energy of the hollow-core
modes (especially when λ→ 0) can be understood using the root configurations
in Eq.(4.89).
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4.7 Transitions in low-lying excitations while the

ground state is invariant

We have seen that the theoretical derivations reveal the well-organized hierarchical

structure of the null space of multiple model Hamiltonians, in which the gravi-

ton modes of different FQH states reside. However, for the graviton modes to be

experimentally relevant, they must be low-lying in the excitation spectrum. For

fully-gapped FQH phases, the graviton modes are also gapped, as shown in Fig.4.4,

as they can never live within the same CHS as the ground state. Moreover, given

they are neutral excitations, for realistic interactions, they may also become gapless

without affecting the robustness of the Hall conductivity plateau [139, 192, 193].

In this section, we proceed to perform numerical calculations for the dynamical

properties of the graviton modes using the theoretical tools developed in the previ-

ous sections. We focus, in particular, on the Laughlin-1/5 state and the Gaffnian

state and discuss possible theoretical and experimental consequences.

4.7.1 Laughlin-1/5 graviton mode

We have shown that the graviton mode of Laughlin-1/5 state lives within the null

space of V̂ 2bdy
1 , and thus it is a quantum fluid of Laughlin-1/3 quasiholes. If we

look at a short-range interaction with model Hamiltonians involving only V̂ 2bdy
1

and V̂ 2bdy
3 , the dynamics of the graviton modes is entirely controlled by V̂ 2bdy

3 (in

principle we can also use other two-body pseudopotentials). Then it is helpful to

understand the low-lying excitations of the following toy model:

ĤL = (1− λ)V̂ 2bdy
1 + λV̂ 2bdy

3 (4.88)

The ground state stays invariant as the Laughlin-1/5 state when the value of λ

is tuned. In contrast, the low-lying excitations can be qualitatively different. In

particular, when λ is close to zero, the graviton mode and the magneto-roton modes

should be the low-lying excitations. On the contrary, if there exist states that are

punished by V̂ 2bdy
1 but not V̂ 2bdy

3 , then they will become the low-lying states when

λ is close to unity because the energy of the graviton modes is proportional to λ.

Thus one can expect the transition of the low-lying states when λ is continuously

increased from 0 to 1.
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HL-1/5
Laughlin-1/5 state
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Figure 4.6: Spectrum of the toy Hamiltonian ĤL with respect to 6
electrons and 26 orbitals. (a) As the color bar shows, the red dots depict the
spectrum of the density modes, and the blue dots denote the hollow-core modes.
The color of each dot is determined by calculating their collective overlap with
all the density modes in the Laughlin-1/3 null spaceHL-1/3, or all the hollow-core
modes in the complementary space H̄L-1/3. As λ increases, though the ground
state (denoted by dark red) stays invariant, the low-lying states show a clear
cross-over behavior and transform from density modes to hollow-core modes.
(b) illustrates the structure of the Hilbert space and the relationship between
the states and the model Hamiltonians. The Laughlin-1/5 null space HL-1/5

(dark red circle) punished by neither V̂ 2bdy
1 nor V̂ 2bdy

3 is the sub-space of HL-1/3

(only punished by V̂ 2bdy
3 ). Meanwhile, there exist the hollow-core modes (blue

circle) only punished by V̂ 2bdy
1 in H̄L-1/3. All of the other states are punished by

both V̂ 2bdy
1 and V̂ 2bdy

3 , living in the remaining part of H̄L-1/3.
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Graviton Mode

Hollow-core Mode

(a)

(b)

(c)

CF Laughlin-1/3 State

Figure 4.7: Nature of the low-lying states with different model Hamil-
tonian in the CF picture. (a) The Laughlin-1/5 state of the electrons can be
reinterpreted as the Laughlin-1/3 state of CFs consisting of one electron and two
fluxes, which also follows from the Jain construction. (b) The graviton modes
can be understood as the excitations of CFs in the lowest CF level. (c) The
hollow-core modes are created by exciting CFs to the second CF level, which
still live in the Gaffnian null space.

The results of the Laughlin states with 6 electrons are shown in Fig.4.6. While

the ground state is invariant (i.e., the Laughlin-1/5 state, denoted by dark red

color in Fig.4.6), the low-lying excitations show an apparent cross-over behavior.

When λ → 1, the density modes, including the graviton modes and the multi-

magneto-roton modes, indicated by red spectrum in Fig.4.6 (a), are no longer

low-lying excitations. The structure of the Hilbert space in the LLL is illustrated

in Fig.4.6(b). The null space of the Laughlin-1/5 model Hamiltonian (Laughlin-

1/5 null space for short) denoted by the red circle is a proper subspace of the

Laughlin-1/3 null space(light-red part), the complement space of which contains

the states either only penalized by V̂ 2bdy
1 (blue circle), or penalized by both V̂ 2bdy

1

and V̂ 2bdy
3 (light-blue part). We can refer to the blue states as the “hollow-core”

modes since they live within the null space of V̂ 2bdy
3 , but out of the null space of

V̂ 2bdy
1 [340–342].
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It is helpful to look more closely at the spectra of HL with λ = 0.05 and λ = 0.95 as

shown in the left panel of Fig.4.5, where the density modes including the graviton

modes occupy the low-lying states when λ is close to 0. In contrast, when λ is close

to 1, the energy of these states significantly increases as expected, so the hollow-

core modes occupy the low-lying excitations. To understand better the nature of

the low-lying states, one can also diagonalize ĤL in different sub-Hilbert spaces

instead of the full Hilbert space of a single LL and to check if the truncation of

the Hilbert space affects the low-lying excitations. In the right panel of Fig.4.5,

the spectra of the Hamiltonian diagonalized in the full Hilbert space are shown,

where green squares denote the states that live almost entirely within the Haffnian

null space. For both cases, ĤL with λ = 0.05 (low-lying excitations consisted

of density modes) and λ = 0.95 (low-lying excitations consisted of hollow-core

modes), numerical studies show strong evidence that all the low-lying states live in

the Haffnian null space. On the other hand, the graviton and the magneto-roton

modes live within the null space of V̂ 2bdy
1 (which itself is a subspace of Haffnian

null space), while the hollow-core modes live outside of the V̂ 2bdy
1 null space.

We can also understand the differences between these two types of low-lying states,

by appealing to the intuitive picture from the CF theory [71, 74]. Fig.4.7 illustrates

the physical distinctions between the graviton modes (low-lying states when λ =

0.05) and the hollow-core modes (low-lying states when λ = 0.95), where the

Laughlin-1/5 state of electrons is reinterpreted as the Laughlin-1/3 state of CFs

as Fig.4.7 (a) shows because each CF contains one electron and two fluxes so the

filling factor becomes ν∗ = 1/(5 − 2) = 1/3. The Laughlin-1/3 null space only

contains the states in the first CF level. The graviton and the magneto-roton

modes are thus excitations within the partially-filled first CF level, which are low-

lying excitations for small λ. In contrast, when λ approaches one, the hollow-core

modes come from the excitations of the CFs into the second CF level, in some

sense similar to the graviton modes of the Laughlin-1/3 state. Some of the root

configurations containing one or more of the “hollow-core” modes can be written

as:
11000000001000010000100001 · · · L = 4

11000000001100000000100001 · · · L = 8

11000000001100000000110000 · · · L = 12

(4.89)

with the lowest angular momentum L = 4, agreeing well with Fig.4.5 (b). From

these root configurations, one can also understand the quantized energy of the
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Figure 4.8: Spectrum of the toy Hamiltonian ĤG with respect to 10
electrons and 22 orbitals. (a) shows the spectra of the model Hamiltonian
ĤG in Eq.(4.90). The low-lying states are density modes even when λ is quite
large, and the absence of hollow-core modes is different from the Laughlin-1/5
state in Fig.4.6. (b) illustrates the structure of the Hilbert space and the rela-
tionship between the states and the model Hamiltonians. All the states in the
complementary space of the Moore-Read null space are punished by both V̂ 3body

3

and V̂ 3body
5 .

hollow-core modes: each pair of electrons in the root configuration (corresponding

to a CF in the second CF level) contributes a unit of energy. Thus for six electrons,

the highest energy should be ∼ 3 as shown in Fig.4.5(a).
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HMR

HMR

Figure 4.9: Spectra of the toy Hamiltonian ĤG diagonalized in the
full Hilbert spaces. The spectrum with λ = 0.05 is shown in the left panel
and λ = 0.95 in the right panel. As expected, when λ = 0.05, all the low-lying
states (density modes) live within the Moore-Read null space HMR. Meanwhile,
when λ = 0.95, all the states except the ground state are in the complement of
HMR within the LLL, denoted by H̄MR.

4.7.2 Gaffnian graviton mode

The behaviors of the Gaffnian graviton modes at ν = 2/5 are not entirely the same

as the Laughlin-1/5 case, which can be seen in the spectrum of the following toy

Hamiltonian:

ĤG = (1− λ)V̂ 3bdy
3 + λV̂ 3bdy

5 (4.90)

shown in Fig.4.8. The density modes are still behaving as predicted by the theoret-

ical derivations, i.e., occupying the low-lying states of HG with λ → 0. However,

as shown in Fig.4.8, when λ→ 1, there exists no state in the Hilbert space that is

only punished by V̂ 3bdy
3 , so the null space of V̂ 3bdy

5 lies entirely within the Gaffnian

null space (also see Fig.4.9). Thus there are no hollow-core modes here in contrast

to the case for the Laughlin-1/5 phase. It would be interesting to see if this is

related to the conjecture that the model Hamiltonian of Eq.4.90 is gapless in the

thermodynamic limit at ν = 2/5, while the Laughlin-1/5 phase is gapped.

From Eq.(4.86), we know the graviton mode gap of the Gaffnian state at ν = 2/5

is determined by the expectation value of the ground state with respect to only

V̂ 3bdy
7 , denoted by d73bdy to be consistent with the two-body case in Fig.4.10, where

the finite size scaling of the structure factor coefficients of different states is shown.
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Previous numerical calculations showed evidence that in the thermodynamic limit,

the gap of Eq.(4.90) at λ = 0.5 closes in the L = 2 sector [192]. This is indeed

the sector of the graviton mode, and we have shown it is in the null space of V̂ 3bdy
3

with its energy entirely determined by V̂ 3bdy
5 . Our numerical calculation is thus

valid for a family of model Hamiltonian of Eq.(4.90) parametrized by λ. Moreover,

it shows that the graviton mode of the Gaffnian phase will likely go soft in the

thermodynamic limit, as its variational energy is an order of magnitude smaller

than the graviton modes in the Moore-Read phase. It is, however, essential to note

that the graviton mode energy gap of the Laughlin-1/5 phase is also an order of

magnitude lower than that of the Laughlin-1/3 phase, as shown in Fig. 4.10a.

While the Gaffnian model Hamiltonian is a theoretical model that is conjectured to

be gapless and thus describes a possibly critical point, it is also closely related to the

gapped Jain ν = 2/5 phase from short-range two-body interactions [190, 242, 343].

It would be interesting to see how the graviton modes at ν = 2/5 behave when

we approach the critical point from the gapped Jain phase at ν = 2/5. The finite

numerical analysis seems to suggest that both the charge gap and the neutral gap

will close, but with realistic interactions, we can also entertain the possibility that

the graviton modes of the Jain ν = 2/5 phase can close first while the charge gap

remains open, in analogy to the nematic FQH phase that has been observed in

experiments at ν = 2 + 1/3 [344–346].

4.8 Experimental significance

While we analyze the graviton modes above with only toy models, they can of-

fer insights into the experimental measurements of low-lying neutral excitations in

FQH phases, using, for example, Raman scattering or inelastic photon scattering

[109, 114, 320, 347]. For the Laughlin phase at ν = 1/5, a short-range realistic

interaction (e.g., in the LLL, or with the Coulomb interaction renormalized by

sample thickness or screening [55, 348, 349]), the graviton mode as well as the

magneto-roton modes will be more prominent. However, since the realistic interac-

tion cannot completely project out the complement of the null space of V̂ 2bdy
1 , the

graviton modes will always mix with the hollow-core modes, so their experimental

signals will not be as clean as those from, for example, the Laughlin-1/3 phase.
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Figure 4.10: Finite size scaling of the structure factor coefficients of
different states. (a) The structure factor expansion coefficients of the Laughlin-
1/3 and the Laughlin-1/5 state. According to the orthogonality of Laguerre
polynomials, dm of the Laughlin-1/m state is equal to the expectation value of

the model Hamiltonian V̂ 2bdy
m (thus cm = 1) acting on this state. Thus the nu-

merical results shown here provide the value of the corresponding dimensionless
coefficients despite the dimension of energy, which is true for Fig.(b) as well. (b)

The expectation value of V̂ 3bdy
7 with respect to the Gaffnian state (≈ 0.04 in

the thermodynamic limit), denoted by d73bdy, is significantly smaller than other

coefficients in the plot, where the expectation value of V̂ 3bdy
5 with respect to the

Moore-Read state is denoted by d53bdy (≈ 1.6 in the thermodynamic limit).
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With longer-range interactions (e.g., in higher LLs), it is still possible for the

Laughlin-1/5 state to be robust in the sense that the plateau of the Hall con-

ductivity can be observed [350]. However, we do not expect clear experimental

signals of the graviton modes for such interactions due to the strong mixing with

the hollow-core modes. If the realistic interaction is short-ranged but dominated

by V̂ 3bdy
3 , there will be no graviton modes (or quadruple excitations) at low en-

ergy. Instead, the low-lying excitations are in the complement of the null space

of V̂ 2bdy
1 , and in particular, the quasihole excitations can be fractionalized and

carry the charge of e/10. This is analogous to the nematic FQH phase at ν = 1/3

observed in the experiments and the fractionalization of the Laughlin-1/3 quasi-

holes near the phase transition [140]. It would thus be exciting if the hollow-core

modes, characterized by fractionalized Laughlin-1/5 quasiholes, could be observed

in experiments.

4.9 Summary

In this chapter, we have introduced the construction of the model wave function for

the graviton modes and presented a number of analytical results for their variational

energies in FQH phases. These results are rigorous in the thermodynamic limit for

the FQH states concerning any arbitrary two-body or three-body interactions. In

particular, we show that the ground state wave function entirely determines the

variational energies of the graviton modes. In addition, for short-range interactions,

only the leading terms of the ground state structure factor, when expanded in the

proper Laguerre-Gaussian basis, are involved in the computation of the graviton

mode energy. These analytical results can help construct model Hamiltonians for

the graviton modes, which are the exact zero-energy states of these Hamiltonians.

We can thus determine analytically if the graviton mode lives entirely within a

specific CHS, or if they have finite overlaps in different CHSs. The latter gives a

microscopic understanding of the multiple graviton modes proposed in the effective

field theory descriptions, as discussed in the next chapter.

There are several proposals for the graviton modes to be detected in experiments,

but in general, it is a difficult task because of the high energy of such excitations.

For many FQH phases with Coulomb interactions in simple experimental settings,

the long-wavelength excitations are not the lowest energy ones. The graviton modes
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thus have to compete with multi-roton and other neutral excitations. The analyti-

cal results we have derived can help us understand how the graviton energy can be

affected by realistic interactions, and how we can tune such interactions to lower

their variational energies. This thesis’s generalization to three-body interactions

also allows us to treat LL mixing in realistic systems [188, 252, 351–353], which can

be significant in higher LLs. Detailed studies of the graviton modes in the context

of actual experimental parameters will be carried out in the next chapter. The

softening of the graviton modes can also allow us to understand potential “phase

transitions” in topological systems even when the ground state topological proper-

ties are invariant, as we explored numerically with the Laughlin-1/5 state and the

Gaffnian state with toy Hamiltonians.

Even with the methodology and the analytical tools developed in this chapter, the

quantitative values of the graviton energy in the thermodynamic limit cannot be

determined without numerical computations and finite-size scaling. It is, however,

a much simpler procedure requiring only the ground state and partial information

about its static structure factor, in contrast to the conventional methods requir-

ing the computation of many low-lying states. The universal characteristic tensor

shows that the Hilbert space of the FQH states is highly structured. This for-

malism can, in principle, be generalized to interactions involving more than three

particles. The dispersion of the graviton mode can also be computed analytically

by expanding the single mode approximation to higher orders in momentum. At

this stage, both cases are algebraically very involved. It would be helpful in the

future to carry out a more general and systematic calculation of the graviton en-

ergy and its dispersion for any arbitrary Hamiltonians. This, combined with a

numerically more efficient way to obtain information from the ground state static

structure factor (or the density correlation functions), can lead to a much better

understanding of the collective neutral excitations in non-abelian FQH phases.



Chapter 5

Microscopic Theory of Multiple

Graviton Modes

We have introduced the microscopic theory about the collective neutral excitations

with spin-2 in FQH phases, called the graviton modes as a typical manifestation of

the interplay between topology and geometry. While Lorentz invariance is absent

in this (2+1)-dimensional space-time, these 2D graviton modes encode topological

information about their respective FQH phases, and their dynamics lead to rich

physics ranging from ground state incompressibility to the dynamical phase transi-

tions of the low-lying excitations [140, 354]. The effective field theory studying the

graviton modes has been proposed by using the Newton-Carton metric, and various

experimental proposals for the observation of these modes have been put forward

[187, 236, 238, 318, 321, 322, 324–326, 355]. In this chapter, we will reveal the ori-

gin of the graviton modes from the metric fluctuations within CHSs [52, 199, 230].

Furthermore, we will discuss more the experimental techniques in probing neutral

excitations such as inelastic polarised photon scattering, which can provide valuable

information about the chiralities of graviton modes [108, 109, 114, 320, 347].

Meanwhile, with the microscopic theory of the graviton modes established in the

last chapter, one can construct model Hamiltonians for these modes in the FQH

fluids at different filling factors [333, 354]. Recently numerical results have implied

the signature of multiple graviton modes in FQH states [335, 356]. Given that

most of the research so far on graviton modes is based on effective field-theoretical

123
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descriptions and numerical analysis with model wave functions [335], we will pro-

vide a more detailed microscopic theory for a more complete characterization of

the emergence and interaction between different graviton modes by analytically

showing that multiple graviton modes (gravitons for brevity) are a generic feature

for FQH fluids, from the splitting of the long wavelength limit of the GMP mode

in different subspaces in a single LL [52]. Using the analytic tools we developed

earlier [354], we demonstrate that the number of gravitons is dynamical in nature,

and is only meaningful when referring to specific interaction Hamiltonians. Each

graviton can be interpreted as the metric fluctuation of a CHS within a single

LL. For short-range two-body interactions, we show all non-Laughlin FQH states

around ν = 1/(2n) with n > 1 (e.g. within the null space of V̂2bdy
n =

∑n
k=1 V̂

2bdy
2k−1

Haldane pseudopotential interaction), including the interacting CF states, have at

least two gravitons. In particular, the Jain states at ν = N/ (2nN ± 1) and the

Pfaffian states at ν = 1/(2n) all have two gravitons if n,N > 1. The Laughlin

states (N = 1) and the Jain states with n = 1 all have a single graviton. This agrees

with the cases studied numerically in both Ref.[335, 356] at ν = 2/7, 2/9, 1/4, at

the same time providing an analytic explanation and geometric interpretation to

their numerical observations.

5.1 Gravitons as metric fluctuations

To fully understand the geometric features of the graviton modes, let us recall the

model wave function of graviton modes given by the SMA in the long wavelength

limit:

|ψg⟩ = lim
q→0

1√
Sq

δ ˆ̄ρq|ψ0⟩ (5.1)

where Sq is the regularised guiding center structure factor with limq→0 Sq ∼ ηs|q|4,
which is fully determined by |ψ0⟩. The Haldane bound dictates that the value of ηs

gives the upper bound to the topological shift of |ψ0⟩ [357]. Generically speaking,

the regularised (guiding-center) density operator δρ̂q is the linear combination of
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magnetic translational operators. But if we expand δρ̂q around q = 0, the expres-

sion can be written as:

lim
q→0

δ ˆ̄ρq = lim
q→0

∞∑
n=1

Ne∑
i=1

in

n!
qa1qa2 · · · qan∂qa1∂qa2 · · · ∂qane

iqa
ˆ̄Rā
i

≡
∞∑
n=1

Ne∑
i=1

in

n!
qa1qa2 · · · qanΛ̄a1a2···an

i

(5.2)

which contains infinite infinitesimal generators Λ̄a1a2···an
i with i as the particle index,

but the discussion to most of them is actually moot because we are working near

the zero point, and more importantly not all of them can form sub-algebras. Thus

we will focus on the first two orders: one is the sub-algebra given by the regularised

translation generator of the center of mass P̂a = ϵab
∑

i Λ̄
b
i :[

P̂a, P̂b

]
= 0 (5.3)

Thus when acting on a uniform ground state, this generator simply gives zero as

only the interactions between the internal particles are considered. This is also

ensured by the generic inversion symmetry in the Hamiltonian that forces all the

odd-ordered generators acting on the ground state to vanish.

For the second order, one can write down the sub-algebra as follows:

[
Λab,Λcd

]
= −i ·

(
ϵacΛbd + ϵadΛbc + ϵbdΛac + ϵbcΛad

)
(5.4)

which is the sl(2,R) Lie algebra as the largest finite-dimensional sub-algebra of

W∞-algebra, so Λmn are the three generators of area-preserving diffeomorphism in

k-space. So one can construct the unitary operator [230, 357]:

Û(χ) = eiχabΛ
ab

(5.5)
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where χab is a real and symmetric matrix, the determinant of which corresponds

to different linear transformations to the space:

det (χab)



< 0, squeezing

= 0, shear

> 0, rotation

= 1, inversion

(5.6)

These generators preserve the algebra of the guiding center coordinates when acting

on them:

ˆ̄R′a
i = Û(χ) ˆ̄Ra

i Û(−χ) = Xa
b (α)R

b
i =⇒

[
ˆ̄R′a
i ,

ˆ̄R′b
j

]
= −iϵabδij (5.7)

where Xa
b = e−2ϵacχcb . If there is rotational invariance in the system, one can also

define the angular momentum operator as the generator in the Cartan sub-algebra

of Eq.(5.4):

L̂g = gabΛab (5.8)

where gab denotes the corresponding metric. Thus to wrap up, in the long wave-

length limit, the regularised density operator acting on the ground state is equiv-

alent to a unitary operator of area-preserving deformation in momentum space:

lim
q→0

δ ˆ̄ρq|ψ0⟩ ∼ Û(χ)|ψ0⟩ (5.9)

This clearly exposes the geometric nature of the graviton mode as the excitation

induced by metric fluctuations and provides the physical reason for calling these

modes “gravitons”. Note that this does not mean that δ ˆ̄ρq in the GMP wave

function depends on some tunable χ. Instead, the effect of the deformation is

entirely determined by the corresponding metric.

5.1.1 The cyclotron and guiding center metrics

From the discussion above, one can see that the metric figures prominently in the

discussion of gravitons. It is useful to first consider the simple case of the integer

quantum Hall effect (IQHE), which are topological phases coming from fully filled
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LLs with the following full Hamiltonian:

Ĥ =
Ne∑
i=1

1

2m
g̃abπ̂iaπ̂ib + V̂int (5.10)

Here as introduced in Chap.2, π̂ia = p̂ia + eÂia denotes the dynamical momentum

operator of the i-th electron (p̂i is the canonical momentum and Âi is the external

vector potential), with the commutation rules [π̂ia, π̂jb] = iδijϵab. The magnetic field

is B = ϵab∂aÂib. The cyclotron energy is assumed to be the dominant energy scale,

so any LL mixing induced by electron-electron interaction can be perturbatively

captured by few-body interaction of the second term V̂int, which now describes the

dynamics only within a single LL [203, 269, 351–353]. The important point here is

that the Hilbert space of a single LL, which we will refer to as the LLL without loss

of generality, is parametrized by the unimodular metric g̃ab in Eq.(5.10), which is

physically the effective mass tensor. Quantum fluctuations around this metric thus

lead to graviton modes in higher LLs, which we can term “cyclotron gravitons”.

This graviton has very high energy in a large magnetic field as the only graviton

for the IQHE since the LLL is fully filled.

For FQHE in a partially filled LL, the dynamics is determined entirely by the

guiding center coordinates ˆ̄Ra = r̂a − ϵabπ̂b. This implies the interaction energy

V̂int is a functional of R̄i only and commutes with the kinetic energy. It can be

explicitly expressed as:

V̂int =

∫
d2qV|q| ˆ̄ρq ˆ̄ρ−q (5.11)

where ˆ̄ρq =
∑

i e
iq · R̄i is the guiding center density operator. For rotationally

invariant systems, we have a new unimodular metric ḡab defining distance in the

momentum space |q| =
√
ḡabqaqb, which is physically independent of g̃ab. We

illustrate a complete analogy to the “cyclotron graviton” in the IQHE by using

the simple example of V̂int = V̂ 2bdy
1 , or the model Hamiltonian for the Laughlin

ν = 1/3 state. Just like the LLL, which is the null space of the kinetic energy

parameterized by g̃ab, the CHS H1 defined by V̂ 2bdy
1 (spanned by the Laughlin

ground state and quasiholes) is parametrized by ḡab. The quantum fluctuation

around g̃ab gives the “cyclotron graviton” outside LLL. In contrast, that of ḡab

gives the well-known graviton or quadrupole mode (the long wavelength limit of

the GMP mode) outside of H1 [230].
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1LL

2LL

HLLL

LLL

LL
MIXING

...

HFibonacci

HMR

HGaffnian
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HLaughlin-1/5

Figure 5.1: Intrinsic metrics in FQH states. The left panel shows that
the fluctuations of the cyclotron metric g̃ab originate from the LL mixing. The
right panel shows the hierarchical structure of the CHSs (null spaces) of the
corresponding model Hamiltonians (more details can be found in Table.4.1) in
the LLL. Each of these spaces can have its own metric gabi , the fluctuation around
which can potentially lead to multiple graviton modes in a single LL.

We want to emphasize the arguments above apply to any V̂int with an incompress-

ible ground state (or even a compressible ground state such as the CF liquid at

the filling factor 1/4 [356]). Thus, generally speaking, all FQH states have at least

two gravitons due to the structure of the full Hamiltonian: the cyclotron graviton

residing in higher LLs at very high energy due to the large magnetic field, and at

least one guiding center graviton within the LLL. For the rest of this chapter, we

will ignore the cyclotron graviton and focus on the dynamics within the LLL. Still,

we will borrow the same concept when understanding the emergence of multiple

guiding center gravitons from V̂int.

5.1.2 Metrics within conformal Hilbert spaces

We have found the hierarchical structure of the CHSs within a single LL, which are

defined by different model Hamiltonians so generically they can have independent

metrics. Let Hα be one of these CHSs, and the null space of the corresponding

model Hamiltonian V̂α. Just like in Eq.(5.11), V̂α contains a guiding center metric

gabα , and Hα continuously depends on it. This is the geometric aspect we would

like to introduce to the CHSs, and each of them can be completely characterized

by a triplet of {Hα, V̂α, g
ab
α }. For the special case where Hα = HLLL, the entire
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Figure 5.2: (a) Illustration of the hierarchical structure of three CHSs
and the ground state |ψ0⟩ within HIII (red sphere) in the Hilbert
space. The corresponding GMP mode |ψg⟩ is outside HI so one can imag-
ine the regularised guiding center density operator acting on the ground state
goes through three CHSs, leading to three emergent gravitons because of the
fluctuation around the metric of each of the CHSs. (b) PH conjugate of
Laughlin states within different CHSs. Here Ci denotes the PH conjugate
within H2bdy

i , and C denotes the PH conjugate within a single LL or a single CF
level. Arrows represent magnetic fluxes, and the CFs denoted by cfnν∗ , consist of
one electron and n fluxes, form a CF FQH state at ν∗. Note that the red (cf24/5)

and the yellow (cf42/3) CFs are anti-CFs with the fluxes opposite to the external
field.
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Hilbert space of the LLL, V̂α is the kinetic energy Hamiltonian and gabα = g̃ab is

the cyclotron metric or the effective mass tensor. All other CHSs are subspaces of

HLLL.

In Fig. (5.1), we illustrate a hierarchical structure of different Hα in the LLL

[354]. For a given Hα, finding another Hβ ⊂ Hα is possible. If we fix gabα , we

can still define a Hβ freely parametrized by gabβ that is entirely within Hα. This is

straightforward for Hα = HLLL since the cyclotron coordinates and guiding center

coordinates commute. For other pairs of CHSs, such geometric tuning can only be

realized with the following Hamiltonian:

V̂int = λαV̂α + λβV̂β (5.12)

with λα ≫ λβ > 0 (the metric dependence of V̂α,β is implicit). For any ground state

|ψ0⟩ ⊂ Hβ of Eq.(5.12) we can thus define two types of area-preserving deformation:

|ψχ
1 ⟩ ∼ lim

|χ|→0
P̂αÛ (χ) |ψ0⟩ ∼ lim

|q|→0
P̂αδ ˆ̄ρq|ψ0⟩ (5.13)

|ψχ
2 ⟩ =

(
Î− P̂αÛ (χ)

)
|ψ0⟩ (5.14)

where Û (χ) = eiχabΛ̂
ab

is the unitary operator inducing the squeezing and rotation

of the guiding center metric, with Λ̂ab = 1
4l2B

∑
i{R̄a

i , R̄
b
i}; δ ˆ̄ρq = ˆ̄ρq − ⟨ψ0| ˆ̄ρq|ψ0⟩ is

the regularised guiding center density operator, and Eq.(5.13) has been established

in [199]. Here P̂α is the projection intoHα so that V̂α|ψχ
1 ⟩ = 0, and |ψχ

1 ⟩ is associated
with the geometric deformation of Hβ. Eq.(5.14) is entirely outside of Hα; in

some cases, it will vanish, as we will see later. If it is non-vanishing, then |ψχ
2 ⟩

is associated with the geometric deformation of Hα. This geometric description

forms the microscopic basis of possible multiple gravitons in different FQH phases,

dictated by model Hamiltonians in the form of Eq.(5.12). We shall see that they

can be resolved by realistic Hamiltonians close to those model Hamiltonians in the

following part.

5.2 Emergence of multiple gravitons

Within this framework, let us start with a collection of CHSs {Hk, V̂k, g
ab
k }. We will

ignore the cyclotron graviton, so all these are subspaces of the LLL, and also with
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a hierarchical structure Hk+1 ⊂ Hk. The model Hamiltonian for understanding

the gravitons is given by:

V̂int =
m∑
k=1

λkV̂k, λk ≫ λk+1 (5.15)

All metrics gabk in the Hamiltonian are arbitrary. Without loss of generality, we

can set them as gabk = I2 since the gravitons are quantum fluctuations around these

fixed metrics. Let the ground state of Eq.(5.15) be |ψ0⟩ ∈ Hm, so the quadrupole

excitation is obtained from the long wavelength limit of the GMP mode or single

mode approximation defined as |ψq⟩ in Eq.(5.1) [52, 199]. Note that |ψg⟩ and |ψ0⟩
are orthogonal due to the vanishing expectation value of δ ˆ̄ρq.

The important question here is which CHS |ψg⟩ resides in. If |ψg⟩ ∈ Hk and

|ψg⟩ /∈ Hk+1, then obviously there is no graviton associated with the quantum

fluctuation around gabk since such fluctuation will bring us out of Hk. However, |ψg⟩
can be decomposed into multiple modes, each withinHk′>k but outside of theHk′+1,

associated with the quantum fluctuation around gabk′+1, as long as |ψ0⟩ ∈ Hk′+1. This

is most easily seen by computing the spectral function defined below:

I(E) =
∑
n

|⟨ψn|ψg⟩|2 δ (E − En) (5.16)

where |ψn⟩, En are the eigenstates and the eigen-energies of Eq.(5.15). Given

that λk ≫ λk+1, we expect to see m − k distinct peaks well separated in energy,

corresponding to m− k gravitons, each with transparent geometric interpretation

as illustrated in Fig.5.2(a). The spectral sum rule for the guiding center structure

factor will clearly be satisfied from all the contributions of these gravitons, as long

as |ψg⟩ lives completely within Hk.

5.2.1 Short-range two-body interaction

A number of analytical results have been derived in the last chapter, which are

rigorous in the thermodynamic limit and useful in determining which CHS |ψg⟩
resides in [354]. Let us first take V̂int in Eq.(5.15) as a sum of short-range two-body
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2/7(8e) 4/13(8e) 2/11(6e) 2/9(8e) 1/4(8e)

0.953[5.3a] 0.986[5.3b] 0.957[5.3c] 0.993[5.4a]; 0.989[5.4b] 0.908[5.7]

Table 5.1: The overlap between the ground states with different filling
factors (first row) of the corresponding model Hamiltonian and the
Coulomb interaction. The corresponding electron numbers and the figure
indices have been included.

interactions as follows:

V̂int =
n∑

i=1

λiV̂
2bdy
2i−1 (5.17)

with V̂ 2bdy
2i−1 as the (2i − 1)th Haldane pseudopotentials, where fermionic statistics

has been considered. Thus the corresponding null spaces H2bdy
n is spanned by

the Laughlin ground state and quasiholes at ν = 1/ (2n+ 1). We have proved

analytically that |ψg⟩ of the Laughlin phase at ν = 1/(2n+1) resides within H2bdy
n−1 ,

but completely outside of H2bdy
n [354] (we take H2bdy

0 = HLLL), which is saturated

by the ground state and quasiholes. Thus there can only be one graviton and

one peak in the spectral function associated with the metric fluctuation of gabn .

There are, however, many other FQH states that are incompressible with respect

to Eq.(5.15) but not in H2bdy
n . These include the Jain states at ν = N/(2nN + 1),

N > 1 and their PH conjugate states (within H2bdy
n−1 as defined in Chap.3) at

ν = N/(2nN − 1), N > 1. Note that all these states still reside within H2bdy
n−1 ,

though the ground state and quasiholes do not saturate H2bdy
n−1 , because almost for

all Jain states expect the Laughlin states, there is no model Hamiltonian for which

the Jain states are the exact zero energy state. One can prove analytically that

their corresponding |ψg⟩ all satisfies |ψg⟩ ∈ H2bdy
n−2 . While they are again completely

outside of H2bdy
n , now they have spectral weights within H2bdy

n−1 . Thus each of those

states will have two gravitons concerning Eq.(5.15), a generic result agreeing with

some special cases studied before [335, 356]. These two gravitons are associated

with the fluctuation of the metrics gabn and gabn−1, which can also be understood via

clustering properties in parton constructions [335].
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5.2.2 Effective few-body interactions

Non-abelian FQH states are fascinating in strongly correlated topological systems,

and many of them are stabilized by few-body interactions. Their gravitons can

also be predicted similarly, assuming they can be stabilized by realistic interactions

adiabatically connected to Eq.(5.15). For example, the Pfaffian state at ν = 1/(2n)

can be understood as a condensate of paired CFs, each with one electron attached

to 2n magnetic fluxes [358, 359]. The model states of these FQH phases all live

within H2bdy
n−1 . For short-range two-body interactions, they will also all have two

gravitons, one within H2bdy
n−1 , and the other within H2bdy

n−2 .

We now illustrate that the number of gravitons is a dynamical property strongly

dependent on the interaction. Let us first look at an Abelian case, which is the

Jain state at ν = 2/9, corresponding to the ν∗ = 2 state of the CFs with each

electron bound to four magnetic fluxes, or the ν∗ = 2/5 state of the CFs with each

electron bound to two magnetic fluxes. We have argued before that with short-

range two-body interactions; this FQH state has two gravitons. It is important

to note, however, while the CHS of this FQH state is well-defined from the CF

construction, such construction does not allow an exact model Hamiltonian within

the LLL. The two-body interaction only defines its CHS approximately, though to

a very good level of accuracy. A better microscopic Hamiltonian is given as follows:

V̂int = V̂3bdy
n ≡

n∑
i=3

V̂ 3bdy
i (5.18)

where V̂ 3bdy
i are the three-body PPs [189]. Note there is no V̂ 3bdy

4 due to fermionic

statistics, and V̂ 2bdy
9 , V̂ 3bdy

11 are doubly degenerate, so here we take them as an

arbitrary linear combination (the CHS is invariant). The unique highest density

ground state of Eq.(5.18) with n = 11 has a very high overlap with the Jain ν = 2/9

state (> 0.99 for eight electrons). While its quasihole counting is non-Abelian, one

could conjecture that the ground state is topologically equivalent to the Jain state,

in analogy to the Gaffnian state and the Jain ν = 2/5 state that has been studied

before [139, 194].

Such subtleties, while important by themselves, do not really affect our discussions

about gravitons, which are gapped excitations. The main message here is that the

null spaces of V̂3bdy
n give a family of CHSs beyond the Laughlin CHSs discussed
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before. The Moore-Read, Gaffnian, and Haffnian CHSs are illustrated in Fig.5.1,

corresponding to the case of n = 3, 5, 6, respectively. Let the null space of V̂3bdy
n be

H3bdy
n , and it is easy to check that H3bdy

11 ⊂ H3bdy
9 ⊂ H2bdy

1 . Note that the ground

state of ν = 2/9 resides in H3bdy
11 , and it has very high overlap with the ground

state of V̂ 2bdy
3 . We can thus construct the following Hamiltonian:

V̂int = λ1V̂
2bdy
1 + λ2V̂

3bdy
9 + V̂ 2bdy

3 (5.19)

with λ1 ≫ λ2 ≫ 1. In addition to the original two gravitons (one from the

metric fluctuation of H3bdy
11 , or the CHS of the ν = 2/9 phase, and the other from

the metric fluctuation of H2bdy
1 ), there will be a third graviton from the metric

fluctuation of H3bdy
9 , easily observable from the spectral function. If we tune λ2

to zero. In that case, the two peaks corresponding to the gravitons of the lower

energies will gradually merge to become a single peak within H2bdy
1 , accounting

only for the metric fluctuation of the CHS of the ν = 2/9 as shown in Fig.5.4.

Such dynamical behaviors physically correspond to the energies of the gravitons

in the spectral function. Thus the merging and splitting of resonance peaks in

the inelastic photon scattering measurements [108, 112, 360, 361]. Furthermore,

merging and splitting gravitons can also be expected for the non-Abelian Pfaffian

state at ν = 1/4, which similarly has an exact three-body model Hamiltonian

[362–364].

5.3 Chirality of gravitons

The microscopic theory can easily predict the chirality of the gravitons without

numerical computations [326] by defining the PH conjugate of CFs within H2bdy
k at

the CF filling factor of ν∗ = 2(n−k)/(2(n−k)+1), corresponding to the interacting

CF states at electron filling factor ν = 2(n−k)/(2(n−k)(2k+1)+1). Each Laughlin

state at ν = 1/(2n + 1) thus have n PH conjugate state with k = 0, 2, · · ·n − 1,

with k = 0 the usual PH conjugate state in the LLL at ν = 2n/(2n+1). Since the

ν = 2(n− k)/(2(n− k)(2k + 1) + 1) state lives entirely within H2bdy
k and entirely

outside of H2bdy
k+1 , one can rigorously show that its graviton mode lives entirely

within H2bdy
k−1 for k > 0, leading to two gravitons [354]. These two gravitons emerge

from the fluctuation of gabk , as well as the fluctuation of the metric defining the

CHS of ν = 2(n− k)/(2(n− k)(2k+1)+1). Since we are taking the PH conjugate
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within H2bdy
k , the graviton within H2bdy

k will also have the opposite chirality to the

one outside of it. For k = 0, the anti-Laughlin state at ν = 2n/(2n + 1) only has

one graviton since there is no additional CHS defined by the two-body interaction

within the LLL that also contains the CHS of ν = 2n/(2n+ 1).

Thus with short-range two-body interactions, all FQH states related to the Laugh-

lin states by particle-hole (PH) conjugation will have at most two gravitons. Mean-

while, there can be multiple well-defined PH conjugations for each Laughlin state

in different Laughlin CHSs, not just within the LLL (where PH conjugation relates

the state at ν to 1− ν). This is because the Laughlin state at ν = 1/(2n+ 1) can

also be reinterpreted as a Laughlin state of CF with each electron attached to 2k

magnetic fluxes (k < n) at the CF fractional filling factor ν∗ = 1/(2(n − k) + 1)

[74, 242] as Fig.5.2(b) shows. For example, the Laughlin-1/7 state of electrons

can be reinterpreted as a ν = 1/5 state of cf2(one electron bound with two fluxes)

within H2bdy
1 . We can then take the PH conjugation within H2bdy

1 , which gives the

ν = 4/5 state of cf2, corresponding to the ν = 4/13 Jain state of the electron filling,

in CF theory it is an interacting CF state (the observed FQH state at ν = 4/13

is unlikely to be a Jain state though [365]). Another example is the FQH state at

ν = 2/7 (a ν = 2/3 state of cf2), which is the PH conjugate of the Laughlin-1/5

state (a ν = 1/3 state of cf2) within H2bdy
1 . Due to the PH conjugation, we know

immediately that these two states have two graviton modes with opposite chiral-

ities. On the other hand, FQH states with one PH conjugation (which is the one

within the full LL, e.g., ν = 2/9) will give all graviton modes of the same chiral-

ity. The chirality of the graviton modes can thus be predicted without involving

numerical calculations (Another way is to look into the wave functions [356]). It is

also consistent with Ref.[366], since with PH conjugation, the corresponding FQH

ground state will not be annihilated by any local Hamiltonians. Relevant numerical

evidence will be shown in the next section.

Note that as an additional degree of freedom, the chirality has to be considered

in the “merging” behavior of gravitons. For those with the same chirality, there

is no ambiguity here. When two gravitons merge into one, they are physically

indistinguishable from a system with a single graviton at the same energy. Micro-

scopically, a hand-waving way of understanding this is that the “stiffness” of the

quantum fluctuations of the two metrics are the same, so it is indistinguishable

from the fluctuation of a single metric.



136 5.4. Spectral functions from exact diagonalization

However, the graviton modes are not just characterized by energy. Even when only

one resonance peak is observed using unpolarized light, it is still possible to observe

two resonance peaks at the same energy by using the circularly polarized light, each

for one polarization [321, 322, 325]. This is qualitatively different from merging

two graviton energies with the same chirality. As a result, only in some cases are

the model Hamiltonians for multiple gravitons helpful in understanding why re-

alistic (Coulomb-based) interactions can efficiently resolve multiple gravitons. In

contrast, in other cases, realistic interactions can be quite different from model

Hamiltonians, so one can consider them as the model Hamiltonians plus pertur-

bations. These perturbations will induce interactions and mixing of the gravitons,

especially if their energies are very close. This should also apply to gravitons of

opposite chiralities. Nevertheless, both resonance peaks should still be observable

for small perturbations with properly polarized light. Beyond small perturbation,

we think it remains an open question since gravitons, in principle, can scatter into

other states (e.g., multi-roton states with the same quantum number) [112], so that

even gravitons with opposite chiralities may mix due to the scattering of other ro-

tons carrying away angular momenta. In this case, additional tuning (e.g., LL

mixing) may be required for detecting them in experiments, and we need further

research to understand these points.

5.4 Spectral functions from exact diagonalization

While the main concepts and predictions of the gravitons have been formulated

analytically above, it is also helpful to further illustrate the formalism with ex-

amples of numerical calculations. The spectral functions for the Jain states at

ν = 2/7, 2/9, 1/4 with Coulomb interaction have been computed [335, 356]. Here

we compute the spectral functions of these and additional FQH states with model

Hamiltonians on the sphere to show that two or even more peaks can be unam-

biguously resolved and far separated compared to the realistic interactions. In all

cases we have studied, the ground states of the model Hamiltonians and the real-

istic Hamiltonians at the same filling factor have very high overlaps (as shown in

Table.5.1), showing strong evidence that they are in the same topological phases.

The first two examples are the Jain state at ν = 2/7 (the PH conjugate of the

Laughlin ν = 1/5 state within H2bdy
1 ) and the interacting CF state at ν = 4/13
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(the PH conjugate of the Laughlin ν = 1/7 state within H2bdy
1 , with some experi-

mental evidence [367]). In both cases, the PH conjugate is defined for CFs, each

with one electron attached to two fluxes. The CHS of both phases are proper sub-

spaces of H2bdy
1 , but outside of H2bdy

3 . Thus there will be a non-zero component

of the graviton outside of H2bdy
1 . A short-range two-body interaction with a very

dominant V̂ 2bdy
1 can thus easily resolve the two gravitons as previously predicted

(see Fig.(5.3a,b)). The two gravitons can also be clearly resolved with V̂LLL since

it is dominated by V̂ 2bdy
1 .

The Jain state at ν = 2/7 also provides an example for us to further understand

the merging of gravitons with different chiralities. Since the PH conjugation re-

verses the sign of all physical quantities that are odd in time-reversal operations,

the two gravitons of this state should have opposite chiralities. By computing the

spectral function with respect to the Coulomb interaction in the second LL, where

V̂ 2bdy
1 is much less dominant than in the LLL, but the overlap between the ground

states is around 0.982 with the topological gap remaining robust with 8 electrons,

one can clearly see the merging behaviors from the overlaps with the gravitons of

different chiralities shown in Fig.5.5. Thus in inelastic circularly polarised light

scattering experiments, we expect to observe two resonance peaks at almost the

same frequency when using lights with both left and right polarizations, corre-

sponding to two gravitons with different chiralities but indistinguishable energy.

The anti-Pfaffian state at ν = 1/4 (the particle-hole dual state of the Pfaffian state

at ν = 1/4) shows precisely the same behavior as Fig.5.6 shows.

The Jain state at ν = 2/7 also provides an example to understand gravitons’

dynamics with realistic interactions further. Since the PH conjugation reverses

the sign of all physical quantities that are odd in time-reversal operations, the two

gravitons of this state should have opposite chiralities. We compute the spectral

function with respect to the Coulomb interaction in the second LL, where V̂ 2bdy
1

is much less dominant than in the LLL. The overlap between the ground states

is around 0.982, with the incompressibility gap remaining robust with 8 electrons.

One can clearly see the merging of the energies of the gravitons shown in Fig.5.5,

which should be highly relevant in experiments. Thus in the inelastic unpolarised

light scattering experiments, we expect to observe two resonance peaks in the LLL

but only one resonance peak in the SLL. However, with the circularly polarised
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light, one (potentially broadened due to mixing) peak will be observed at almost

the same frequency for each polarization in the SLL.

For the Jain state at ν = 2/9, any V̂ 2bdy
1 dominated interaction (e.g., V̂LLL) will give

two gravitons, as can be analytically proven. From numerical studies with eight

electrons, the spectral weight of the graviton outside H2bdy
1 is small compared to

other Jain states. It is also another example where a single graviton (here within

H2bdy
1 ) can be split into two gravitons, this time with the introduction of the three-

body interactions. We can analytically show that within H2bdy
1 , there is non-zero

graviton spectral weight both within and outside of H3bdy
9 . Thus an introduction of

V̂ 3bdy
9 to the microscopic Hamiltonian can lead to the splitting of the two gravitons

in total to three gravitons, as shown in Fig.5.4. It is worth noting that the graviton

within H3bdy
9 dominates, and both the second and the third graviton have spectral

weights that are more than one order of magnitude smaller. This could be a finite-

size effect since we can analytically show that the spectral weights of all three

gravitons are non-zero for any finite systems. It is still possible, however, that in

the thermodynamic limit, the weights of the second and/or third graviton vanish.

We cannot access system sizes with more than eight electrons numerically and

will leave more detailed discussions to future works. Moreover, in experiments,

there can be two separated peaks with respect to the Coulomb interaction with a

properly tuned V̂ 2bdy
1 as shown in Fig.5.4(c). Note that the Jain states at ν = 2/7

and 2/9 are predicted to be stable in the SLL [368, 369].

The non-Abelian Pfaffian state at ν = 1/4 is the exact ground state of V̂3bdy
10 . Just

like the Pfaffian state at ν = 1/2 (believed to be stabilized by second LL Coulomb

interaction) [93, 370], this state can also be stabilized by a slightly modified V̂LLL,

with an overlap of 0.91 for eight electrons. While this small perturbation may

not be easily realized in experiments, with this Hamiltonian, we have the clear

understanding that there will be two gravitons (one inside, and the other outside

of H2bdy
1 ). It is interesting to note that we have the hierarchical relationship that

H3bdy
9 ⊂ H2bdy

1 ⊂ H3bdy
8 , and both gravitons are within H3bdy

8 and at the same time

outside of H3bdy
9 . Thus with the model Hamiltonian consisting of only three-body

PPs, these two gravitons will again merge to become a single graviton, in the ab-

sence of V̂ 2bdy
1 , as reflected in Fig.5.7. As a comparison, the anti-Pfaffian state at

ν = 1/4 (as the particle-hole conjugate partner of the Pfaffian-1/4 state within H1)
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has two peaks with opposite chiralities. With a slightly modified Coulomb interac-

tion when the energies of the two gravitons merge, we can see only one resonance

peak from the inelastic scattering of the unpolarised light but one resonant peak

each for the two circularly polarised light with the opposite chirality. Furthermore,

properly tuning V̂ 2bdy
1 in realistic interactions can lead to a better resolution of the

peaks, as shown in Fig.5.7(C). For non-Abelian states, there are additional neutral

modes, e.g., the “gravitino” modes at spin s = 3/2 for Pfaffian [199, 371] can be

considered super-partners of the gravitons. We expect multiple gravitons will also

lead to multiple gravitino modes and will leave detailed discussions elsewhere.

5.5 Experimental relevance

The experimental detection of the multiple GMs in FQH systems and their inter-

action is exciting because of both the topological and geometric aspects of such

neutral excitations. Inelastic scattering experiments can be carried out in the FQH

state with phonons or photons of proper frequency to check the existence of the

GMs and find their energies. To further detect the chiralities of GMs, one needs

to use circularly polarised light corresponding to the photons with +2 or −2 spin

angular momenta transferred to the system [187, 236, 321–323, 325, 326]. With

realistic interactions, different GMs can interact and mix strongly if their energies

are similar, and for GMs of the same chirality, multiple GMs can merge into one.

For GMs of opposite chiralities, even if their energies are close, they may still be

resolved with circularly polarised light, so the resonance peaks could be broadened

due to mixing and scattering between the GMs and the multi-roton continuum.

The microscopic picture we developed points to the crucial role of the hierarchy

of energy scales associated with different CHSs, which realistic interaction must

imitate to resolve multiple GMs. Thus, realizing a robust Hall plateau may not be

enough to detect GMs. The experimental system may need to be flexible enough

to tune the effective electron-electron interactions, to control the dynamics of low-

lying gapped excitations.

For systems when the LL mixing is negligible (e.g., with a strong magnetic field),

our calculation shows that short-range interaction (e.g., the Coulomb interaction

in the LLL) can at most resolve two gravitons both for abelian and non-Abelian

FQH phases, and we have not found any exceptions. The universality of such
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results is due to the algebraic structure of the Laughlin CHSs. To resolve the

two gravitons clearly, we prefer to make the effective interaction as short-range as

possible. Formally if we expand the realistic two-body interaction in the Haldane

PP basis, we should aim to have the ratio consecutive PP coefficients (i.e., the ratio

of the coefficient of V̂ 2bdy
i over that of V̂ 2bdy

i+1 ) to be large. This can be achieved

by screening electron-electron interaction or by increasing the sample thickness in

experiments. In particular, Jain states at ν = N/(2nN + 1) with N > 1, as well

as PH conjugate states at ν = 2(n− k)/(2(n− k)(2k + 1) + 1) with k > 0, will all

have two gravitons. Numerical calculations also show that short-range interactions

favor the incompressibility of these FQH states compared to the bare Coulomb

interaction.

The most easily observed second graviton in experiments would be the one outside

of the V̂1 null space (i.e., H1), which requires a dominant V̂1 interaction and can

be realized with the Coulomb interaction within the LLL for FQH states around

ν = 1/4 as discussed in previous works [354]. For FQH states in the SLL, however,

the graviton outside of H1 will mix strongly with the ones inside H1 because of

the significantly stronger V̂3 as compared to the LLL Coulomb interaction. It is

also important to note while the FQH states around ν = 1/6 (e.g., the ν = 2/11

state) all in principle have at least two gravitons (except for the Laughlin state at

ν = 1/7), they will be hard to observe even with the LLL Coulomb interaction. This

is because such gravitons have to be resolved by a dominant V̂ 2bdy
3 (as compared

to V̂ 2bdy
k>3 ), which is not the case for the LLL Coulomb interaction. Thus in general,

the observation of multiple gravitons, even for simple two-body interactions, will

necessarily require careful tuning of experimental parameters with Coulomb-based

interaction.

The short-range two-body interactions do not favor non-Abelian FQH states, as the

compressible composite Fermi liquid (CFL) states are generally more competitive,

for example, at ν = 1/(2n) [203, 205, 246, 247, 254, 372, 373]. For non-Abelian FQH

states, we generally require longer-range interactions (e.g., Coulomb interaction in

the second LL) or few-body interactions from LL mixing [139, 203, 364]. While it is

hard to predict from finite-size numerical calculations how realistic interactions can

stabilize these exotic states, these additional ingredients are necessary if we want to

observe more than two gravitons. A possible candidate for three gravitons seems to

be the Jain state at ν = 2/9, where we have shown that the proper introduction of
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three-body interactions can lead to three peaks in the spectral function. However,

we expect one of the peaks resolved by the three-body interaction to be relatively

weak, and the dominant peak resides at low energies. Our numerical results so far

are inconclusive for this state due to the small system sizes accessible, and more

work is needed to establish its behavior from finite size scaling.

5.6 Microscopic basis for the effective field the-

ory

The theoretical formalism also serves as the basis for effective field theory, where we

show the necessity of additional modes (called the Haldane modes) depending on

properly identifying the base space of such theories. For the effective field theory

construction, the number of gravitational fields needed (i.e., the Haldane modes)

for a complete description of the response to the metric fluctuation should be

determined by the underlying microscopic theory. It is important first to identify

the physical Hilbert space on which the effective field theory is based. For example,

for the Jain states near ν = 1/(2n), the elementary particles are CFs with each

electron bound to 2n magnetic fluxes (and their PH conjugates, or CF holes). CF

levels thus span the Hilbert space (the fully filled ones give the Jain ν = N/(2nN+

1) states) and their PH conjugates (giving Jain states with ν = N/(2nN −1)). We

can denote it as the base space of the effective field theory. In particular, it is the

full Hilbert space of the LLL for n = 1. For n > 1, the base space is H2bdy
n−1 .

To determine if and how many Haldane modes need to be added to effective field

theory, it all depends on if the long wavelength limit of the GMP mode lives

entirely within the base space. For n = 1, this is definitely the case since the GMP

mode lives entirely within the LLL, as illustrated in Fig.5.8(a). In particular, the

regularised density operator δ ˆ̄ρq is PH symmetric. For n > 1, the GMP modes for

all the Laughlin states live entirely within the base space, but δ ˆ̄ρq is no longer PH

symmetric within the base space. One can also show rigorously from the microscopic

point of view that all Jain states at ν = N/(2nN±1) with N > 1 have GMP modes

partially outside of the base space, thus requiring at least one additional Haldane

mode to be added to the effective field theory as illustrated in Fig.5.8(b).
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In principle, we can have multiple CHSs containing the base space with the hier-

archical structure Hbase ⊂ H1 · · · ⊂ Hk with k > 1, and the GMP mode resides in

Hk having non-zero weights in all Hk′<k. We have not found such cases for Jain

states with CHSs defined by two-body and three-body PPs, but it may be possible

for other FQH states or CHSs defined by few-body PPs involving clusters of more

than three electrons. These cases are illustrated by Fig.5.8(c), where more than

one Haldane mode is needed for the effective field theory to agree with microscopic

Hamiltonians that can resolve those CHSs in terms of energy.

Numerical calculations are essential in verifying effective field theory predictions.

Still, it is important to note that the number of Haldane modes needed for the

effective field theory does not necessarily correspond to the number of peaks in the

graviton spectral function since the latter depends on the microscopic details of

the Hamiltonian. Fig.5.8(d) is another example that even within the base space,

there can be multiple CHSs, which can be resolved by proper model Hamiltonians.

With such interactions, the graviton within the base space (which is the conven-

tional graviton, not the Haldane modes) can lead to multiple spectral weight peaks

well separated in energy. However, coupling the composite particles with the Hall

manifold metric in the effective theory captures the total weight.

In fact, from an effective theory point of view, we can always use a single Haldane

mode to capture all the graviton weights outside of the base space. In contrast,

the usual composite particle action can capture all the graviton weights within the

base space. While the known Dirac CF description for the Haldane mode strictly

speaking only applies to the FQH states very close to ν = 1/(2n) (i.e., for Jain

states ν = N/(2nN ± 1) with N → ∞, and definitely does not apply for Laughlin

states at N = 1), the general arguments here with the relationship between the

GMPmodes and the base space should apply to all effective field theory description,

with or without particle-hole symmetry.
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Figure 5.3: Spectral functions of the FQH states with the filling factor
ν = 2/7, 4/13 and 2/11. The graviton mode of the FQH state with filling
factor ν is called ν-graviton for simplicity. The blue, the turquoise, and the red
region denote H2bdy

3 , H2bdy
1 and its complement correspondingly, from which

one can clearly see the gaps between different sectors. For the FQH states with
ν = 2/7 and 4/13, model Hamiltonians show similar signatures of two peaks in

the spectral functions as coulomb interactions (a small V̂ 2bdy
5 is added in (b2)

for stabilizing the proper ground state). The corresponding overlap between the
model and ground states of the Coulomb interaction can be found in Table.5.1
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Figure 5.4: Spectral functions of FQH states at ν = 2/9 with 8 elec-

trons. (a) shows two peaks within H2bdy
1 in the spectral function with respect to

the model Hamiltonian, where the green sector denotes the null space of V̂ 3bdy
9 .

These peaks will merge after V̂ 3bdy
9 is removed from the Hamiltonian as (b)

shows. A slightly exaggerated ratio between different PPs is adopted to clearly
show the signature of different CHSs. (c) shows the spectral function of Coulomb
interaction, where two peaks can also be clearly observed. In experiments, one
can tune V̂ 2bdy

1 to increase (orange area) or decrease (blue area) the separation

to get peaks resolved better. Note that the peaks with modified V̂ 2bdy
1 have been

smoothed by Gaussians.
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Figure 5.5: Spectral functions of the Jain state at ν = 2/7 with 8
electrons with respect to the Coulomb interaction on the LLL and the
SLL is shown in the main figure, where we use different colors to distinguish the
LLL gravitons with different chiralities, denoted as σ = + or −. The overlap
between the gravitons with respect to the coulomb interaction on the SLL (black
peaks in the main plot) and those with different chiralities on the LLL can be
found in the subplots, from which one can clearly observe that some of the peaks
can be regarded as two gravitons of opposite chiralities at almost the same energy.
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Figure 5.6: Spectral functions of the Anti-Pfaffian state at ν = 1/4
with 8 electrons with respect to the Coulomb interaction on the LLL
and the SLL is shown in the main figure, where we use different colors to
distinguish the LLL gravitons with different chiralities, denoted as σ = + or −.
The overlap between the gravitons with respect to the coulomb interaction on
the SLL (black peaks in the main plot) and those with different chiralities on the
LLL can be found in the subplots, from which one can clearly observe a similar
feature to the case of the Jain state at 2/7.
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Figure 5.7: Spectral functions of the Pfaffian state at ν = 1/4 with 8

electrons. The turquoise, the orange and the pink region denote H2bdy
1 , the null

space of V̂3bdy
8 and its complement correspondingly. When there is no two-body

PP V̂ 2bdy
1 in the Hamiltonian, one can clearly observe the merging of peaks from

(a) to (b). Considering the coulomb interaction is V̂ 2bdy
1 -dominated, we can also

observe two peaks in (c), which also shows that one can significantly increase
(orange area) or decrease (blue area, and both smoothed by using Gaussians)

the separation between the peaks by properly tuning V̂ 2bdy
1 in experiments. A

slightly exaggerated ratio between different PPs is adopted to clearly show the
signature of different CHSs. A small V̂ 2bdy

5 is added in (c) for stabilizing the
non-Abelian Pfaffian state.
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Figure 5.8: Number of Haldane modes with different structures of
CHSs. Laughlin states (N = 1, η = 1) are denoted by the white point in the
corresponding CHS (blue circle). For the Jain states at N/(2nN + η), (a) with
n = 1, N > 1, η = ±1, (e.g., the FQH state at 2/3 and 2/5, etc.), because
δρ̂q = δρ̂∗q, these states will show the same behavior as the Laughlin state at
1/3, i.e., one peak with no Haldane mode required. When n > 1, (b) shows
that a single Haldane mode is needed in the effective field theory despite two
peaks observed in the spectral function, among which, given n, the states with
N = 2, η = −1 can be regarded as the particle-hole conjugate partner of the
corresponding Laughlin state within some specific CHS, and the states with
N > 1, η = 1 are the states in higher CF levels as shown in Fig.5.2(b). (c)
and (d) show more possibilities and conclude that the number of Haldane modes
added to the effective theory cannot be easily reckoned from the number of
peaks in the spectral function I(E), which is closely related to the microscopic
Hamiltonian used.
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Conclusions

There exists a natural geometric degree of freedom in FQH phases, which manifests

itself with the anisotropy of the system or the nonuniform dielectric media [230]. It

has been hidden in the algebra - when we separate the cyclotron and guiding center

coordinates and define the ladder operators, the single irreducible representation

of the Heisenberg algebra allows us to define a metric tensor for each coordinate

[374]. These two coordinates do not have to be the same. In fact, they are nor-

mally independent of each other, and the guiding center metric is determined by a

compromise between the effective mass tensor and the Coulomb metric, the values

of which should be determined to minimize the ground state energy [230].

The metric tensor can also be defined in specific sub-Hilbert space within a single

LL. These subspaces are defined by model Hamiltonians, which can contain effective

many-body interactions due to LL mixing [189, 351–353]. Virasoro algebra can be

constructed in these subspaces, so an emergent conformal symmetry exists, and

thus they are named conformal Hilbert spaces (CHS) [139]. As the null space of

the corresponding model Hamiltonian, a CHS contains the densest ground state

with all the quasihole states, which can be separated into different Lz sectors if

there is a rotational invariance. The counting of Lz sectors within a CHS can be

analytically given by a generating function, restricted by the generalized clustering

rule set by the model Hamiltonian. By comparing the generating functions, one can

unambiguously define an isomorphism between CHSs. For any system size, there

always exists a unitary mapping from one CHS to another isomorphic one. The

process of looking for such a transformation is termed as a composite fermionization
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[375] because understanding the same system with isomorphic CHSs is equivalent

to the flux-attachment operation proposed in traditional composite fermion theory

[71–76]. The particle-hole conjugate is well-defined within the CHSs, which can also

form a hierarchical structure within a single LL reminiscent of a fractal structure.

To better understand the geometric aspects in FQH phases, a specific species of

excitations is found to be the key. They can be understood as density fluctuations

from the ground state and thus a neutral excitation, based on which one can

write down the model wave function for them with the single mode approximation

(SMA) [51, 52]. Such a wave function is constructed directly from the ground state

using a regularised density operator, so the intrinsic correlations are still reserved.

There is a quadrupole structure in these modes, which can be understood as the

long wavelength limit of the magneto-roton mode as well [199]. More importantly,

because the density operator in the long wavelength limit is equivalent to an area-

preserving deformation operator [230], these modes are essentially generated by the

metric fluctuations within the Hilbert space, so they are named graviton modes

considering their spin-2 feature. As a result, a gravitational field theory can be

used to describe these massive graviton modes.

Based on the SMA wave function of graviton modes, one can rigorously calculate

the expectation value of its energy with respect to microscopic model Hamiltoni-

ans by expanding the structure factor in the same Laguerre-Gaussian basis as the

pseudopotentials. The result is governed by a universal and well-defined charac-

teristic tensor (characteristic metric for two-body Hamiltonians), the structure of

which allows us to calculate or prove many useful properties of FQH states without

any numerical input. For example, one can include the graviton modes into the

hierarchical structure of CHSs, giving the corresponding model Hamiltonian for

the gravitons constructed from different FQH ground states.

Furthermore, by using toy models, one can predict a transition in the low-lying

spectrum with an invariant ground state. By tuning the pseudopotential, one can

observe the density modes gradually replaced by the hollow-core modes in some

cases, which reveals a finer structure in the Hilbert space. Using a CF picture, one

can understand the different natures of these two modes. In particular, because

these neutral modes define the incompressibility gap in the FQH phase, the gap-

lessness of the Gaffnian state could be determined by calculating its energy with
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respect to the three-body pseudopotential V̂ 3bdy
7 . But a concrete result requires

enough data to do the finite-size scaling.

Because each CHS can hold its own metric, it is possible to generate multiple

gravitons if the model Hamiltonian is appropriately assigned. To observe such a

phenomenon, one can compute the spectral function of the graviton modes and

count the number of peaks. But for the commonly seen FQH states, such as the

Laughlin and the Moore-Read states, there can only be one graviton for them, as

proved by the characteristic tensor formalism. Thus one can look at their particle-

hole conjugate within some specific CHSs. The gravitons can be merged or split by

tuning the model Hamiltonian, which could be realized using higher LLs. And to

distinguish different gravitons, the energy spectrum is insufficient because the chi-

rality has to be considered with the particle-hole conjugate operation. To observe

the gravitons with opposite chiralities, one can use polarised photon scattering ex-

periments [108, 112, 360, 361]. The deterministic effect of the model Hamiltonian

implies that the number of gravitons is a dynamical property, which can also help

with the field-theoretical approach with the number of additional Haldane modes

to satisfy the Haldane bound.
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Heisenberg algebra

In this section, we would like to briefly introduce the Heisenberg algebra, which

can be regarded as the rigorous description of the fundamental algebraic structure

of canonical quantization [265]. Then, after showing the mathematician’s defini-

tion of this algebra, we will discuss its role in quantum mechanics, especially in

understanding IQHE.

A.1 Generic Heisenberg algebra

Definition A.1 (Heisenberg Lie algebra). The Heisenberg Lie algebra h2d+1 is the

vector space R2d+1 = R2d ⊕R with the Lie bracket defined by its values on a basis

Xj, Yj, Z(j = 1, · · · , d) by

[Xj, Yk] = δjkZ, [Xj, Z] = [Yj, Z] = 0 (A.1)

and any element h ∈ h2d+1 can be written as:

h =
d∑

j=1

xjXj +
d∑

k=1

ykYk + zZ (A.2)

Then one can also find the corresponding Heisenberg group H2d+1 (which is called

the Weyl group by mathematicians) by using the Baker-Campbell-Hausdorff for-

mula. More importantly, the representations of H2d+1 can be easily found, which
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turns out to be quite remarkable because there is only a single irreducible repre-

sentation(irrep) for this algebra, derived from the Stone-von Neumann theorem.

A.2 Physical implications

The single irrep of Heisenberg algebra enables physicists to conveniently discuss

the commutation between canonical variables after choosing π′(Z) = −i · Î. As

good students of quantum mechanics, we know that the canonical commutation

rule, proposed by Born and his student Jordan, lies right at the center of quantum

mechanics as one of the most basic assumptions(we have tentatively put back the

Planck’s constant in the equations below):[
Q̂i, P̂j

]
= iℏδij · Î (A.3)

which directly leads to the canonical quantization formalism of quantum field the-

ory by noticing the obvious isomorphism between h2d+1 and the algebra of Poisson

brackets with 2d canonical variables:

{A,B} 7−→ 1

iℏ
[Â, B̂] (A.4)

The most commonly-seen application of Eq.(A.3) is in the quantum harmonic os-

cillators. The Heisenberg algebra serves as the algebra of the corresponding phase

space (which is also relevant in the procedure of geometric quantization, but we will

skip this part here) and can help define the creation and the annihilation operators

that work for many-particle systems, which is essentially another representation of

the Heisenberg group:

âi =

√
mω

2ℏ
Q̂i + i

√
1

2mωℏ
P̂i, â†i =

√
mω

2ℏ
Q̂i − i

√
1

2mωℏ
P̂i[

ai, a
†
j

]
= δij · Î

(A.5)

and one can find this representation in the Hilbert space of holomorphic functions

with the inner product defined with a Gaussian measure as:

(F,G) ≡ π−n

∫
Cn

dzF̄ (z) ·G(z) · e−|z|2 (A.6)
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Such a space is named as Segal–Bargmann space or Bargmann–Fock space.

In the context of IQHE, the electrons are moving in an external field, which cor-

relates with the orthogonal spatial dimensions, and a slightly hand-waving under-

standing of this is that it looks like the phase-space of 1D quantum Harmonic

oscillator transferred to the real space because of the non-commutativity between

momentum components as shown in the algebra of covariant momenta:

[π̂ia, π̂jb] = i · ℏeB · δijϵab (A.7)

Hence from this point of view, many things about the real-space dynamics of IQH

states can be mapped to the phase space of a quantum harmonic oscillator with one

of the coordinates playing the role of canonical momentum and thus the Heisenberg

group/algebra, such as the discrete Landau levels, the holomorphic coordinates and

wave functions in the lowest Landau level, etc.



Appendix B

W∞-algebra and GMP algebra

As explained in the main text, one can define two groups of creation and annihi-

lation operators corresponding to the inter-LL(â† and â) and intra-LL(b̂† and b̂)

degrees of freedom. With only the kinetic term considered, b̂† and b̂ commute with

the Hamiltonian, which implies that they are the generators of magnetic trans-

lations. Note that although the exact form of the operators does depend on the

gauge choice, the Heisenberg algebra of b̂† and b̂ is gauge invariant. In this ap-

pendix, we would like to introduce another vital algebra in QH Hilbert spaces,

called the W∞-algebra, which reveals that there are more (actually infinite) com-

mutative operators with the kinetic Hamiltonian. Furthermore, it is isomorphic to

the GMP algebra, which offers a geometric interpretation of density operators.

B.1 w-algebra and W -algebra

The notations could be confusing among different literature. So firstly, we would

like to introduce the meaning of w-algebra and W -algebra we will adopt in this

appendix. The w-algebras are extended conformal algebras, and based on the spin

N ; these algebras are denoted as wN -algebras. Meanwhile, N can be pushed to

infinity, and the corresponding algebra is called a w∞-algebra, the commutator of

which is of the form [376]:

[ws, ws′ ] ∼ ws+s′−2 (B.1)
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where we use ws to denote the generator with spin s. By generalizing the commu-

tation of w∞-algebra to the summation of generators Ws with more spins one can

construct the so-called W∞-algebra:

[Ws,Ws′ ] ∼
s+s′−2∑
m=2

Wm (B.2)

These algebras can also be finite, called the WN -algebras, which can be regarded

as the generalization of the Virasoro algebra to generators with higher spins. (The

Virasoro algebra is naturally equivalent to aW2 algebra). But here, we will restrict

our discussion to the two infinity algebras.

B.2 SDiff(R2) in phase spaces and QH systems

The w∞-algebra and the W∞-algebra are both deeply connected to SDiff(R2), the

area-preserving diffeomorphisms of 2-planes [377]. Thus they are instrumental in

studying the dynamics of strings, 2D gravity theories, and the phase space of 1D

harmonic oscillators (both classical and quantum), which will be briefly explained

as an example to illustrate these two algebras [376, 378].

In the phase space of a 1D classical harmonic oscillator, the symplectic structure

ω = dq ∧ dp is preserved by the canonical transformation defined by a generating

function F (q, p), which exactly corresponds to SDiff(R2) from (q, p) to (Q,P )(also

known as the Liouville’s theorem):

Q = q +
∂F

∂p
= {q, F}; P = p− ∂F

∂q
= {p, F} (B.3)

where { } denotes the Poisson brackets. Then each term in the expansion of

F (q, p), denoted by Fn,m = −qn+1pm+1, is a generator and their algebra is the

w∞-algebra:

{Fn,m, Fk,l} = [(m+ 1)(k + 1)− (n+ 1)(l + 1)]Fn+k,m+l (B.4)



Appendix B. W∞-algebra and GMP algebra 157

We can generalize the same idea to the QH systems. By combining the magnetic

translation generators(or the intra-LL orbital ladder operators) into:

B̂n,m ≡
(
b̂†
)n+1

b̂m+1, n,m ≥ −1 (B.5)

One can easily see that all these operators commute with the Hamiltonian, which

corresponds to an infinite symmetry. The commutation between them is given by:

[
B̂n,m, B̂k,l

]
=

Min(m,k)∑
s=0

(m+ 1)!(k + 1)!

(m− s)!(k − s)!(s+ 1)!
B̂n+k−s,m+l−s − (m↔ l, n↔ k)

(B.6)

This is exactly the full form of the w∞-algebra. Note that one can take the classical

limit by truncating all the higher order terms of ℏ:[
B̂n,m, B̂k,l

]
= ℏ((m+ 1)(k + 1)− (n+ 1)(l + 1))B̂n+k,m+l +O

(
ℏ2
)

(B.7)

which shows that they are related by quantization in physics after replacing the

commutators with Poisson brackets, i.e.

The W∞-algebra is the quantum deformation of the w∞-algebra.

One can apply for central extension within any spin sectors for the W∞-algebra

but only within the spin-2 sector for the w∞-algebra.

Considering the duality between the two sets of ladder operators in QH systems,

one can also construct another W∞-algebra of â and â† in precisely the same way.

The complete algebra of the generators in the whole Hilbert space will be the direct

product WA
∞ ⊗WB

∞.

B.3 GMP algebra and FFZ algebra

Suppose one essential intrinsic algebra of QH states concerning the kinetic energy

is the Heisenberg algebra (apart from the ubiquitous C∗-algebras of observables).

In that case, the Girvin-MacDonald-Platzman(GMP) algebra should be considered

the other primarily for the FQH states (including fractional Chern insulators) be-

cause it describes the algebraic structure of the interaction Hamiltonian. Moreover,
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a significant feature of the GMP algebra is that it is isomorphic to the W∞-algebra

we introduced above:[
ˆ̃ρq1 , ˆ̃ρq2

]
= −2i sin

(
1

2
q1 ∧ q2

)
ˆ̃ρq1+q2 ;

[
ˆ̄ρq1 , ˆ̄ρq2

]
= 2i sin

(
1

2
q1 ∧ q2

)
ˆ̄ρq1+q2

(B.8)

because here, the magnetic translation operators play the role of the generating

function F (q, p) in the phase space of harmonic oscillators. One can expand it to

work out the algebra of the generators of different order based on the same recipe.

Very similar behavior can also be found in a topologically massive gauge theory

with Chern-Simons terms on the torus, where one can get the Fairlie-Fletcher-

Zachos (FFZ) algebra of generators [379]:[
W̃n,n̄, W̃m,m̄

]
= −2i sin

2π

k
(n1m2 − n2m1) W̃n+m,n+m (B.9)

wherem1,m2, n1, n2 ∈ Z and W̃n,n̄ is equivalent to a magnetic translation operator.

Thus one can regard it as the discretized version of the GMP algebra.
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Schrieffer-Wolff transformation

Schrieffer-Wolff(SW) transformation is a degenerate perturbation method that can

generate an effective Hamiltonian in a low-energy subspace within the whole Hilbert

space. Hence, it is naturally suitable for the system with discrete subspaces such as

FQH problems considering we normally project everything to a single LL (especially

the LLL) [272]. In this appendix, we will intuitively introduce the assumptions,

the expression, and the physical ideas behind this method.

The first thing one should notice is that the statement of projecting everything to

a “low-energy” subspace is technically not accurate. In fact, one can do the SW

transformation to any subspace within the Hilbert space. But the requirement is

that the spectrum of the subspace we would like to project onto must be isolated

from the other parts in the full spectrum, as Fig. shows. After the perturbation,

the gap remains open, which determines the errors in the result. So, in other words,

the subspace we are considering is closed under the effect of the perturbation so we

can treat them as a whole and consider the change of its spectrum, which will not

mix with the other parts either. The SW transformation can be understood as a

slight rotation to all the quantum states within this subspace, as Fig. shows, which

is typically called a direct rotation, and one can observe this from the expression:

Ĥeff = eŜĤe−Ŝ = Ĥ + [Ŝ, Ĥ] +
1

2
[Ŝ, [Ŝ, Ĥ]] + · · · (C.1)

where Ŝ is an anti-Hermitian operator that can be solved perturbatively. In the

context of FQH states, the perturbation originates from LL mixings as derived in

the main text.
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Jacobi coordinates

Jacobi coordinates are used to rearrange the degrees of freedom of different parti-

cles, commonly used in dealing with many-body systems like polyatomic molecules

or celestial mechanics [380]. The key of this method is to transform the separated

coordinate of each particle to the center of mass of their combinations. In some

cases, the dynamic equations can be simplified to some extent by this procedure.

However, note that for a generic N -body problem with N ≥ 3, such a coordinate

transformation cannot help reduce the complicity of solving the equations. So it

only works very efficiently when there are other constraints in the system, in other

words, in those essentially low-dimensional problems.

The procedure of transforming to Jacobi coordinates is quite organized, as illus-

trated below:

• Index all the N particles in the system;

• Define the first Jacobi position vector R1 as the relative position between the

second and the first particle at r2 and r1, pointing to the first one;

• Define the second Jacobi position vector R2 as the relative position between

the center of mass of the first two particles c12 and the third particle at r3,

pointing to the center of mass of the first two particles

• · · ·
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R1

r1

p1

p2
p3

r2

R2

R3
R4 r3

r4

p4

c12 c23
c34

Figure D.1: Jacobi coordinates.

• Define the k-th Jacobi position vector Rk as the relative position between

the center of mass of the first k particles ck−1,kand the k + 1-th particle at

rk+1, pointing to the center of mass of the first k particles;

• · · ·

which can be formally written as:

Rj =
1

m0j

j∑
k=1

mkrk − rj+1,

RN =
1

m0N

N∑
k=1

mkrk, m0j =

j∑
k=1

mk

(D.1)

where j is an integer within [1, N − 1].

In our discussions on the effective many-body interactions in a single Landau level,

these Jacobi coordinate operators commute with each other so one can construct

ladder operators for them and simplifies the problem by noticing that the center

of mass of all the particles does not affect the dynamics because it does not exist

in the Hamiltonian.
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Generalized Laguerre polynomials

In this section, we will introduce a group of important polynomials in the discussion

to FQH wave functions, especially in a rotationally invariant system, called gen-

eralized Laguerre polynomials L
(α)
n (x), which can be defined in several equivalent

ways. Here we will only list some of them:

• the solution of the generalized Laguerre’s equations: xy′′+(α+1−x)y′+ny =

0;

• the contour integral 1
2πi

∮
C

e−xt/(1−t)

(1−t)α+1tn+1dt with C circles the origin without

enclosing the essential singularity at 1

• the series
∑n

i=0(−1)i

(
n+ α

n− i

)
xi

i!

• the recursive polynomials given by L
(α)
k+1(x) =

(2k+1+α−x)L
(α)
k (x)−(k+α)L

(α)
k−1(x)

k+1

with L
(α)
0 (x) = 1 and L

(α)
1 (x) = 1 + α− x;

• · · ·

One can write down the corresponding generating function as:

1

(1− t)α+1
e−tx/(1−t) =

∞∑
n=0

tnL(α)
n (x) (E.1)
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These polynomials make up a complete and orthogonal basis (concerning a Gaus-

sian measure) for the Segal–Bargmann space (as discussed in Appendix.A):∫ ∞

0

xαe−xL(α)
n (x)L(α)

m (x)dx =
Γ(n+ α + 1)

n!
δn,m (E.2)

This is also why they act as the wave functions of orbitals within a single Landau

level. Furthermore, there is a recurrence relation given by:

L(α)
n (x) = L(α+1)

n (x)− L
(α+1)
n−1 (x) =

k∑
j=0

(
k

j

)
L
(α+k)
n−j (x) (E.3)

It has been rigorously proved that the generalized Laguerre polynomials with Gaus-

sian measures are the eigenfunctions of 2D Fourier transform, denoted by the func-

tional operator F̂ [332]:

F̂ [Ψnα (q)] = (−1)n(i)α ·Ψnα (p) (E.4)

with the eigenfunction of the vector q defined by:

Ψnα(q) =

[
2(n!)

(n+ α)!

]1/2
qα ·L(α)

n

(
|q|2
)
e−

1
2
|q|2 (E.5)

which can thus be used to expand any eigenfunctions of F̂ , such as the (static)

structure factors of FQH states.

The first kind of Bessel functions are closely related to the generalized Laguerre

polynomials:

Jα(x)(
x
2

)α =
e−t

Γ(α + 1)

∞∑
k=0

L
(α)
k

(
x2

4t

)
(
k + α

k

) tk

k!
(E.6)

which can help calculate the matrix element of the δ-potential. Furthermore, the

Hardy-Hille formula also relates the hyper-geometric functions to the generalized

Laguerre polynomials by:

∞∑
n=0

n!Γ(α + 1)

Γ(n+ α + 1)
L(α)
n (x)L(α)

n (y)tn =
1

(1− t)α+1
e−(x+y)t/(1−t)

0F1

(
;α + 1;

xyt

(1− t)2

)
(E.7)
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Three-electron wave functions in

a magnetic field

In this section, we will closely follow Laughlin’s solution to the Schrödinger equation

of three 2D electrons moving in a magnetic field:

Hinternal =
1

2m

[
ℏ
i
∇a −

e

c
Aa

]2
+

1

2m

[
ℏ
i
∇b −

e

c
Ab

]2
+

e2√
2

 1

|zb|
+

1∣∣∣−1
2
zb +

√
3
2
za

∣∣∣ + 1∣∣∣−1
2
zb −

√
3
2
za

∣∣∣
 (F.1)

where we have used the Jacobi coordinates(the center of mass is not present in the

Hamiltonian):

za =

(
2

3

)1/2 [(
z1 + z2

2

]
− z3

]
zb =

1√
2
(z1 − z2)

(F.2)

The complete orthonormal basis states of the anti-symmetric FQH three-body wave

functions provided in Ref.[18] are written as:

|Ψkl⟩ =
1

[26l+4k+1(3l + k)!k!π2]1/2

[
(za + izb)

3l − (za − izb)
3l

2i

]
·
(
z2a + z2b

)k
e−(1/4) · (|za|2+|zb|2)

(F.3)

the expansion of which in the n1, n2 basis can be found in Table.F.1 [203].

164



Appendix F. Three-electron wave functions in a magnetic field 165

(k, l) α = 2k + 3l |Ψkl⟩ =
∑

n1,n2
αn1,n2 |n1, n2⟩

(0,1) 3 1
2
|3, 0⟩ −

√
3
2
|1, 2⟩

(1,1) 4 −
√
5
4
|5, 0⟩+ 1

2
√
2
|3, 2⟩+ 3

4
|1, 4⟩

(0,2) 6
√
3
4
|5, 1⟩ − 1

2

√
5
2
|3, 3⟩+

√
3
4
|1, 5⟩

(2,1) 7 −
√
21
8
|7, 0⟩+ 1

8
|5, 2⟩+

√
15
8
|3, 4⟩+ 3

√
3

8
|1, 6⟩

(1,2) 8 3
4
√
2
|7, 1⟩ −

√
7

4
√
2
|5, 3⟩ −

√
7

4
√
2
|3, 5⟩+ 3

4
√
2
|1, 7⟩

(0,3) 9 1
16
|9, 0⟩ − 3

8
|7, 2⟩+ 3

√
7

8
√
2
|5, 4⟩ −

√
21
8
|3, 6⟩+ 3

16
|1, 8⟩

(3,1) 9 −
√
21
8
|9, 0⟩+

√
3

4
√
2
|5, 4⟩+ 1

2
|3, 6⟩+

√
21
8
|1, 8⟩

Table F.1: The anti-symmetric three-body wave functions expanded
in the basis of |n1, n2⟩. The values of αn1,n2 can be found easily by looking at
the coefficient of the corresponding basis. For example, α5,0 is the coefficient of

|5, 1⟩, i.e. −
√
5
4 .
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[57] T. Chakraborty and P. Pietiläinen. Fractional quantum hall effect at half-
filled landau level in a multiple-layer electron system. Phys. Rev. Lett., 59:
2784–2787, Dec 1987. 6

[58] M. Rasolt and A. H. MacDonald. Collective excitations in the fractional
quantum hall effect of a multicomponent fermion system. Phys. Rev. B, 34:
5530–5539, Oct 1986.

[59] C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watan-
abe, T. Taniguchi, P. Kim, J. Hone, and K. L. Shepard. Multicomponent
fractional quantum hall effect in graphene. Nature Physics, 7(9):693–696,
2011. 6

[60] R. Prange and S. M. Girvin. The quantum Hall effect. Springer US, 1987.
6, 12

[61] R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C. Gossard, and
J. H. English. Observation of an even-denominator quantum number in the
fractional quantum hall effect. Phys. Rev. Lett., 59:1776–1779, Oct 1987. 7

[62] K. K. W. Ma, M. R. Peterson, V. W. Scarola, and K. Yang. Fractional
quantum hall effect at the filling factor ν = 5/2, 2022. 7

[63] C. N. Yang. Concept of off-diagonal long-range order and the quantum phases
of liquid he and of superconductors. Rev. Mod. Phys., 34:694–704, Oct 1962.
7

[64] S. M. Girvin and A. H. MacDonald. Off-diagonal long-range order, oblique
confinement, and the fractional quantum hall effect. Phys. Rev. Lett., 58
(12):1252–1255, Mar 1987. 9

[65] E. H. Rezayi and F. D. M. Haldane. Off-diagonal long-range order in frac-
tional quantum-hall-effect states. Phys. Rev. Lett., 61:1985–1988, Oct 1988.
7

[66] F. D. M. Haldane. Model for a quantum hall effect without landau levels:
Condensed-matter realization of the ”parity anomaly”. Phys. Rev. Lett., 61:
2015–2018, Oct 1988. 7, 22

[67] A. K. Geim. Graphene: status and prospects. science, 324(5934):1530–1534,
2009. 7

[68] A. K. Geim and K. S. Novoselov. The rise of graphene. In Nanoscience and
technology: a collection of reviews from nature journals, pages 11–19. World
Scientific, 2010. 7



174 BIBLIOGRAPHY

[69] B. E. Kane, D. C. Tsui, and G. Weimann. Evidence for edge currents in the
integral quantum hall effect. Phys. Rev. Lett., 59:1353–1356, Sep 1987. 7
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Science & Business Media, 2012. 40

[277] L. Onsager. Crystal statistics. i. a two-dimensional model with an order-
disorder transition. Physical Review, 65(3-4):117, 1944. 41



BIBLIOGRAPHY 189

[278] A. M. Polyakov. Quantum geometry of bosonic strings. Physics Letters B,
103(3):207–210, 1981. 41

[279] J. Maldacena. The large-n limit of superconformal field theories and super-
gravity. International journal of theoretical physics, 38(4):1113–1133, 1999.
41, 80

[280] Z. Merali. String theory finds a bench mate. Nature, 478(7369):302, 2011.
41

[281] S. Sachdev. Condensed matter and ads/cft. In From gravity to thermal gauge
theories: the AdS/CFT correspondence, pages 273–311. Springer, 2011. 41

[282] M. Fremling. Success and failure of the plasma analogy for laughlin states on
a torus. Journal of Physics A: Mathematical and Theoretical, 50(1):015201,
2016. 44

[283] Y. Tournois. Abelian and non-abelian quantum Hall hierarchies. PhD thesis,
Department of Physics, Stockholm University, 2020. 45

[284] T. H. Hansson, M. Hermanns, S. H. Simon, and S. F. Viefers. Quantum
hall physics: Hierarchies and conformal field theory techniques. Reviews of
Modern Physics, 89(2):025005, 2017. 45, 47

[285] R. Blumenhagen and E. Plauschinn. Introduction to conformal field theory:
with applications to string theory, volume 779. Springer Science & Business
Media, 2009. 45

[286] K. Schoutens and X.-G. Wen. Simple-current algebra constructions of 2+1-
dimensional topological orders. Phys. Rev. B, 93:045109, Jan 2016.
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